
AD-R126 619 SOFTURRE ENGINEERING PRACTICES: THEIR IMPRCT ON THE loll
RD11669 DESIGN OF A PRRA AINTENANCE NAUAL(U) N C Y 2L

POSTGRADUATE SCHOL ONTER Ey CA J H TEUSCHER DEC 82

uNCLAssIFIED F/G 9/2 NE7hh1hhhhi

4
t

I2.2

1U l111112.0

M(CROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of SIANDARI S A P'

I

4

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
E LECT -
Ji, 12 1983

THESIS D

SOFTWARE ENGINEERING PRACTICES:
THEIR IMPACT ON THE DESIGN OF A

PROGRAM MAINTENANCE MANUAL

by

James Howard Teuscher
December, 1982

C.D

-.J

Thesis Advisor: Ron lodes

Approved for Public Release; Distribution Unlimited

83 04 11 082

SCCUUITV CLASSIFICATION OF TWISG E 4 CRMP0 Sollmed) ________________

REPORT DOCUMENTATION PAGE 33*0 flSTRUrC?0fNS
- 537031E COMPLEV.NG FORM

-T REPORT NUM§ER OTACCESSION N0. 3-1E1CIPIENTVS CATALOG NuIMU(R

4.ThiT Re Imati on teDsg/6 TYPIEo E~ORT PERIOD covERED

Software Engineering Practices: Master's Thesis
Thei Imact n te Deignof a Dcme,18

Program Maintenance Manual 6- PCVRN aING. 49PORT NUMEER

-'V ATH011 8)a. CONTRACT an GRANdT NuM61ER(.

James H. Teuscher

9. PRFOM#N ORGNIZTIO NAM AN AORX"10. PROGRAM ELEMENT. PROJECT. TASKC~ PEPORINGORGAIZAIONNAMEAUGaDDESSAREA & WORK UNIT NUNSERS

Naval Postgraduate School
Monterey, California 93940

It CON TROLLING OFFICE N0AMC AND A08111199 It. REPORT DATE

Naval Postgraduate School December, 1982
Monterey, California 93940 13. NUMOIR OF PAGE&

94
-. MONITORING AGENCY NAME II AOORESU66(Di It.Ems*t ftem C..etrailih, OfftCe) Is. SEURITY CLASS. (el hie re6.1)

UNCLASSIFIED
fee. DECLASSIFICATON/OowmnGAOimi;

SCHE IDU LE

O4 DSTRIBUTION STATEMENT (01 1*#* ROpoff)

Approved for Public Release; Distribution Unlimited

17. 0ISrRIU1UTION STATEMENT (of it#* 864Mt# 1"*rE I* 0100k 20- it dif"Ot AV= NO~e)

16 SUPPLEMENTARY NOTES

It KEY WORDS (CONC.W d"n. "ee"00 dide i A@C*e@WF OWg it~tlr" 614 0bl o been)

Software Engineering, Software Documentation, Maintenance
Manual, Structured Programming

20. AGSTRACT (Cm..im..1 ON ?6VW0* @Id. it 010c000"'lm Redeaf ~1" 16 rnin .

The cost of software is fast becoming a major slice of DOD's
automated data nroce ssing budget. Mlost of --his cost is directly
related to t.ri maintenance of existing software. A primary cause
is poor or non-texistent documentation which leads to high costs
wvhen it comes time to change the software to correct errors,
add enhancements, or to comply with changes in Federal regula tions
DOD policies. (Continued)

DD :7 1473 ETIrO I~ Nov S I .5 OSOLITE

S/N 0I02-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (Whe DoAtaered,

ILI

ABSTRACT (Continued) Block # 20

)This thesis looks at the various software engineering techniques
available to programmers and managers for the development-of soft-

ware documentation. A set of guidelines for an "ideal" program
maintenance manual is proposed. These guidelines are based on
current DOD standards, examples of software maintenance manuals
from industry, and applications of current software engineering
practices.

Accession For

NTIS GBRA&I
DTIC TAB El
Unannoun ed l
SJustification_---

Distribution/

Availnbility Codes . - ..

Avail ancd/or
Dist spvcial

DD Forr. 1473

s/~J '%~2-I4-(6)1 £gcumwv c6I.aGSeIueFTw @, a , *&ateV 0.1. ,

Approved for public release; distribution unlimited.

Software Engineering Practices:
Their impact on the Design of a

Program Maintenance Manual

by

James Howard Teuscher
Lieutenant, United States Navy

B.A., State University of New York, College at Oswego, 1975I

Submitted.in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
December 1982

Author: e

Approved by:__,,-

Thesis Advisor

Second Reader

- -- - ---

Chairman, Depart int of Admin1s-rative Sciences

Dean of Information ind Policy Sciences

3

" " .i
+

" : i . . . i/ - .. ': . -.- -

ABSTRICT

The cost of software is fast becoming a mijor slice of DDD's

automated data processing bulget. most of this zost is

directly related to the mainteaince of existing software. A

primary cause is poor or non-existant documentation which

leads to high costs when it cones time t3 change the sofz-

ware to correct errors, add enhincements, or to comoly with

changes in Federal regulations/DOD policies.

This thesis looks at the various software engineering

techniques available to programmers and managers for the

divelopment of software documeatation. k set of guidelines
for an "ideal" program maintanance manual is proposed. These

guidelines are based on current DoD stalards, exanples of

software maintenancs manuals from iadustrf, and applications

of current software engineering pra.ztices.

' TABLE OP CMTENTS

I. INTRODUCT ION 9

A. THE NEED FOR DOCUMENrATI3N9
. PURAPOSE AND ORGANIZArION OF rHESIS 14

II. BACKGROUND OF SOTWARE D)CUMENTATI3N 16

h. THE SOFTWARE LIFE-CY:LE 16

1. Software Development 16

2. Software Operati n 20

B. SOFTWARE MANAGEMENT ... 4......... 21

1. DOD Management Policies 23

2. DOD Directives aid Standrls 27

III. rECHNIQUES TO SUPPORT S)ETWARE DD3]iENTATION . . . 32

1. STRUCTURED PROGRAMMUIG .. 32

B. MODULARIZATION 37

Z. DATA STRUCTURE 39

D. DATA COMMUNICATION 2.............. 2
E. HIGH ORDER LANGUA3ES (HOL'S) 44.........

F. THE PROGRAN LISTING 46.............6

1. Commenting 48................8

IV. r9E MAINTZ,--.CE MANUAL 51

X. OBJECTIVES OF A MAInrENANCE 4AJTUAL 51

1. -3eneral

2. Recor3 of Desi. 53.............

3. Support 3aaint_ nics PZog-=nr'S Task K 54

3. DE:AR:YENT OF DEFENSE REQUIREAT S 55...... 5

1. Program Mai ntnz7ce 1 u ar 56
2. ?ro--am Descriptlon 9ocumis-.i 57

3. Da-a Base Desi7i Docimen: 5........

. ?oqrar ckage)ocum=-nit 5.

5. n_-:blmwis DI)S quir -.-s.......

I-

II

Z. A PROPOSED "IDEAL" IkINTENANCE 1ANUAL 63

(1. Overall Program Structure. 61
2. The Prcgram Listing 61

3. A Data Dictionar y 66

4. Appendices 67

V. CONCLUSIONS ANE RECOMHENDATI3NS 69

APPENDIX A: PROGRAM MAINTENANZE MA~ItAL (ODD) 73

LIST OF REFERZNCES 79

INITIAL DISTRIBUTION LIST 8.... .. 8

LIST OF FIGURES

1. 1 .anpower Loading anu laintenanza costs 10
2.1 DOD Software Life CYcl- Moel 17
2.2 Software Life Cycle--3;neral Schematic 18
2.3 RADC Software Life Zy:-le 22

3.1 Basic Control Construzts 33

3.2 Basic Control Construzts 35

3.3 Structured vs. Unstru:tured Coliag 36
3.4 File Search Function o . . . 37
3.5 Example of a Data Str:tur a 39

3.6 Example of an ADA Dati Structu:a o 41
4.1 An Example of Meaniag-fl Commeats 63

4.2 Example of an ADA Data Table (R- :-r d) . o . . . 64
4.3 Example of a CMS-2 Data Table 65

7

7

LIST OF fABLES

I. Information Documentation Provillzs **13

- II. Software Design Methods 24

III. Key Goals of ADA * **..* *45

V. Recommended Locations for Coaments 50

A. THE NEED FOR DOCUENTATION

computer software maintenance in Federal ADP igencies,

produced some int.eresting observations :Ref. 1).

1. rwo thirds of the progriamers at 15 Federal XDP agen-
:;:es spent thear time on software uBinterance.

2. r~e Department of Defense will spend approxiately $3
billion in 1981 on. sortwire.

3. Agencies havea *m~de little effort to effezCtivqely
Banage and n~inmize the resources required to main-
ta--n computer software.

4. Softwar.e is o ften maintained by ?aopla whc did not
develop it.

5. P00; dCcumentation oftea results in rebuill4.ng ar
er.tiz.system of p:ograms beacause L.underst-ard, ng and
3odiiyfn0 an exist-ng p:)gram may be more t1-roable and
expense then building a new one.

The Federal Government is not ilonez in i:s software mainte-

nance 'crises'. All ADP users, in.=lud~n; pr~vate iadustry,

are beiag swal.lowed up by ths "trpitss -)'- software anage-

ment" as Fred Brooks !as so vividly deszribed [Ref. 2). The9

co:s-!s to: t-he gcvernment and private_ inlustry, in Cr:ms of

dollars and manpower, IS increasing it an *. aarmuiag rates.

C:osts f or sof t ware (procureitait an a 'na nt enanca) are

expected to =each 1 200 billion by 1985. DOD estinassI"

will! sp=end $30 billicn by 1990 for embe-ILed softIwzare alon:

[Ref. 3,4].

a lar:e share if these c~sts are :;D: softwars '=

n ,nc e (s ee F -g u re 1 .1). VaI jo UStS .U iS ha ve S '_now.t

J.:om forty -cc rinety-five peccaeit of maiapwedr effort i most

AD? oraniza- -ions is spent on softwire teac

(Ref. 5-14].

MMWFOWEPIWWYUIl

S1STW8 ONWTOI

FUNCTIONM. 0153656 INiSTALLATION
SYSTEMS SPECIFICATION SMWA

CODING - -

SPECFICTIO

DEIG VIII ITO
I0 1I EXE SONk N

PRJC MG
ITim

.ue. 1 HnoeoLaiganaaaeanecss

There are many reasons for the wi.s. variation iJ effort
being devoted to software maint-nanze, hoever, a definition

of maintenance should be presented first. Software Mainte-

nance is best defined as:

That activity which is concerned with naking changes tosoftware for the purpose of improving Dr correcting the
software without introduciag iew errors CRef. 15].

Despite the fact that large amounts of nanpower -ar other

resources are spent on softwa.e maintaaace, few lanagers

comprehend the underlying reasons. Thera are four basic

issues behind the problems of sf4twire Baintenance:

* Maintenarce is considered less lIamor:us, int-resting
and cha2lanin as compared 0 ss em design and
pr:ramminq; hnce, teC ha is lc incentive for
coaputer personnel -o become involved in maintenance
activlites (or document th.ir time i--I iffort spent on
maintenance).

o During development it is often too early in the project
tc fCrsee pro lems which nay occur lurinq Aaintenance;
as a consepuence maintainability (ti--prcoerty of sof--
ware which makes maint nance Ictiv4ties easy to
perform) is not provided for in the system design.

* Pr:jec management does not always r._ognize that main-
tain ability cons iderations should be- an inmtgral Part
of the design process.

* i- is very difficult to nodify or i Mpl-v :h= struc-
ture of a Program aftec tae program na, been w.7iren.
(Ref. 15]

Weapon system software and r_=l-ti e system softwars

used extensively by the Depactmant Df DfE-_-se (DOD) suffers

-n sinilar problems (Ref. 16].)e ?oza "Ref. 171 repots

-na- rir Fcrce avionics software costs about S75 ozr

-- s-ructicn -c evelop, but __osts are arouni

54,000 ocr ins-ruction. SAGE, I miiiary ieeTse sVs-em, had

an av ra ce annual cost of 20 -i lin do'Li-r -- Zr - y-r__s

cf operi.ation ccmoared to an irziaI deveL'opment cost of 230

'I!- i [Ref. 181.

The need for efficient, C33t effectiie software mainte-

cance is important because "..of the need to keep DOD

real-tize weapon system softwaca operatial as error free as

possible and the need to :heck the escalatiag cost

asscciated with modifying this softire" :Raf. 16].

Good documentation is seen is one of the best tools for

improving software maintenance :RBef. 19. Tn general, docu-

mentation serves as a means of commanication within an

organimzation, especially over time. Do:'Iaentatio1 facili-

tites the tra..ning of new persorl. and is J;.r modification

o f a software system by people other than the o ri-6ginal1
developaent programmers. Silbay [Ref. 23) sees do~umenta-

t'on as addressing three prinacy groups of pecple; zanagers,
pr.oqrammers/system analysts, aad users. ?ie also argass that

the sof-;tware documentation must be clar, comprehensive,

aIe ta eI and well structured in order to be used effec-

tvely. Good document ation can and aust orovid a great dea.

of useful information. SpecifirALl3y, this iLaformati:,a has to
cmmunizate to -6he maintenance personneL znough i1t-i. so
-hat enhancement-s and chances to -:he sof:Jare can be sasily

maie and do not Droduce unwanted alffezts in other carn-s srf

-:he systcem (Ref. 211. Table '.I lists eximples of the types

of :-rfocator. nseded in docuaaata:-on.

Docimentaticn. has several. Imotn usses baynd a
qsneral desc=p:nion of code. Du:ing the so)ft-ware deeopnen:

p~iase it is used -for commuL:ation betwe members of the
laesian team, for -:ra-4nng'- ned uersontL ass--anea to :he

o ec-n and as a basis for de:-s--;n ::ev:e=ws. Du::nza tae s)f-
wa-rT ma-r::enance Peri-cd the i :;im-=ntation ere again as a

::a~ng bas z-aguide fo ofctiramero hcig

as an coaan::ed collection ofis:n :riatc, ac as i

hi-s-r--=a" -race of th!e scftwa-r-a's ~r ~nand cvi .

'be -3:: no rnoas- ze --I= -!I~r~ f cons :-: ring
ronE 0~~~tc c:: - -ne..Y oue:oa s an nareurqa.
pc=:n G: rh soft-ware dav:eLopmen: oro::ea-s [Ref. 221.

TABLE I

Information DoCameatation ProvidesI

I-A historical record of softiare systen Ie-veiopmeat.

I A deaaIled analysis of software systan design.

I-A well s-tructured souzc--' cole listiLng with comments
Ion .oqic and processing flois.

1 Idqa-ification, logical, ani physica' characteristics I
Requre eBse. oeratWig environment, and design

chIce-stc oftesvta
I-Written irstructicnis for noa-AD? pecsraael that I

expJ.la I s wi-.at. the syst em (sD&ftwa.-e and4 hadware)
does and how to use it.

-Format of i nput data and output, reports.

I-Tecnca. information about' datai coll?::ti4.on
Irequ-4remerts.

I -Detailed speciflicatzons, dascr:.pmions, and rciIs
Ifor all tzests and test data.

Dr.,cimenta::lon is an Impor--iiat product of soundl sztwa:=e

r.;n eErn a design a t h qr -:h an a sir'~ta bv-Droduc_ o f
d=aSiqr. Documenat--on has to be clear and rh=is. iccu-
m _n -: a-- n fomthas -to be coavenisnt aad simols to asse. ra

d::rn~a:cnhas t) be organi-zed --*a a hirhcIfra~hun 12

:esame manner that the cod -'s straztured. All d=_=s-cn
dc I s ion s and their inipact his -,o be acplainsd, and thac

matahodology fcr modificatilons decied -a alvance. 7r :
c n r - s , an d -:h-~ accur t ina met hodsz for n o difica.,-: a: 0ths

zo' ware, has t-o be t horcugh C Ref. 23].

13 Copy avacioble to DTIC does not

p~w~ full legibl x~pzoductiofl

How much an~d what types of Jocumentation must be decided

during the the design phase of system development. luch to

often these decisions have be=e: put off until late in the

system development cycle ohich results in poor or

ron-existant documentation [Ref. 1].

If de are to :*.mprove the 3aintainability of large soft-

ware systems we must also "de9siga for =hange"l as Parrnas

suggests (Ref. 214]. This i-nzlales lesignlng good dozumenta-

tion to tell us what a software system does and how it does

it.

B. PURPOSE AND ORGANIZATION OF THESIS

The purpose of this thesis is two-foLl. First it wi-l

examine and review Federal and Departmeat of Deferse direc-

t-.v e s on standards for documentation. racluded will be a

summary of the various technigaes of donimentation from the

tacbni-ca. literature. Seconi, a 1:?siga for a Programmer'Is

Ma~ntenance Manual will be prsented wtih incorporates the
latest crcepts in software angi neering. reraosbhn

apartioular design, and the b?.e1fis t bze gaine wi'1l be

di scusse d.

Chapter I: of the thesis wi1l ceview --he concept --f h

so::twar-e life cycle and how software miantaaance activi t -iss

rel 1a te to aiffersnt life :ycle pa a s -sF. A ifScussicn of

ouzrent. DOD di= ec t'ves *n sofrwa=_e marim zrt thlat govs~n
weapon systesm software wLll be givcen Isrs. Tezhn 17,1e S

cai:rertl v avail a focr progranners and sof-:waze conr:aztors

-:or documentation willI b e d es = Jib e In --*"1 . 1 Il. These
t:ezhnnIques Include methods fo: :ers en::-__7 prcran o a i

sich as s::zuc:,ized programmi ng, da a S1:ruc__aires= a
c:ommente _d proq~am listings.

1:4

Chapter IV contains a lescriptian of a Programmer's

Maintenance Manual based on D3D requirenents for software

documentation and recommendatians for :hinges to such a

manual. The manual is designel from the point of view that

the program L.sting now proviles a great deal of "self-

documentation" resulting frou idvancas in structured

prggramming techniques. In addition the purposes iai goals

of a manual in general are pcessented with a view that any

manual should be designed for its intenisi user.

Finally, Chapter V will ;:ovide con:lasions ana recom-

mendations. An appendix contains a copy 3f the current DoD

standard for a program maintenance Panual.

15

- - -I- - . -

II. ACKgQ§ j OF ~&R OCUEI

A. THE SOFTWARE LIFE-CYCLE

All software, tactical weapon systen and general data

processing, must go through several phases or steps from the

time a need for a software system is conceived to the point

where the system is operational. This series of steps is

generally referred to as the software life cycle. The

different phases of the life zycle have various nazes when

discussed in the literature. Many representations of the

life cycle are described. Figite 2.1 depicts one such model

based Dn the well understood DOD system life zycle as

presented in DOD Instruction 5330.1. Fili:e 2.2 represents a

more general approach to the life cycle piases.

1. Software Dee Iloment

In order to understand better whit must be !one to

zreate a software system, an infomal _scription of each

phase is provided (Ref. 25].

a. Sys-em ?easibility and Analysis Phase

The eventual user of a systn liscovers a ne -

for which a computer based a forzation system -r wsapon

system seems to be the answer. The aatara of the aeed is

analyzed-; the outlines of -aa type)f system that would

sat-isfy these needs are established. The nos- feas-iole and

supericr concept is dzfined.

15

4

DEFENSE SYSTEM SOFTWXRE
LIFE CYCLE LIFE 2Y:LE
MAJOR PHASE SUBPHASE

Re quirelents

Conceptual ----- f--i ----
-- Requiraents

--- -alition

Va;idation Valilltion
Full-Scal e Full.S:1 qS Development Develo3zent

Production Produzti n
I----------- ------------------------I)ebugglng

Depoyment ------------! Fine Tuaiag

Maintaninze -
I Support ---
I I difization I

Figure 2.1 DOD Software Life CYz1e Model.

b. Requirements Specification Phase_

Functional descriptions of s system are devel-

oped using a particular formal methodology. Constraints on

the systsm's st-ucture and r_=sou- usa e are identified.

Zzonomi: constraints on the development process it-elf a=e

stated. This phase may be an iterativ orocess that oscil-

lates between the statement of specificitions and -finenment

cf the !-sian. Dczumentaticn standards ani management objec-

tives should be defined and listed. This phase is tz l er*y

and conzisely state what the system is to do - -ot h t: lo

Z. Product Design Phase

Wcrkinq from the spi.i6ians the owe-ali

ha-wa=/sof -ware -rahi tectu:e is conc) r, The unierlying

Structure of -he oroblem to - ich this svst--m -i2 b. b
solution is Zscuqht out. when -i.;s st:u,_-te bEccmeF a -, :

17

System FeasabilityJ I and Analysis

I-->I]Requierits|Specification

Design

t--> dtd

-------.-
>Software D Celopment

- 1aintenane I...1----:om-ssion I- I
I ;Oifiatio~j<--~ --- 1 EIatnegratlnI

-- I - -- -- I

I - II ---

L-- ------0 pera t- ns

Fiqure 2.2 Software Life :ycle--Ganral Schematic.

griq Oz the Syst-am is c-v s BI. rhe j=_-gn, 4= reZesarJV

at a gross)-rac - level cf d=-ai_. Ths pats -f :e systm=

a i their --ationshps, the basir i:-hms t.at the

sys-em will use, and the maj:r data a:esenta-i:ns -ha-

will be needed are created. During this phase tac basir

-.st p is pviae,, p--=-::rtbly by a "iependet design

d. Detailed Design Phase

The major parts of the design are now refined in
detail. Precise algorithms aal data strictures are defined

and spelled out. If not already done in the Product Design

Phase, decisions as to which parts of th- system will be in

software and which in hardware ire made. Both detail design

and product design may require several levels of refinement

and reiteration.

e. Validation PhaseI
At this point in the development a check aust be

made to ensure the design, ia all details, fulfills the

sp e cifizations.

f. Programming, Code aad D.bug Phase

Encoding of algorithms and data representations

is accomplisLed in this phase. Individual modules are

prepared and tested individually. All oasic debugging is

zompletzd where possible. Sce bugs may aot appear antil all

zhe system parts are executed together.

g. integration/System resting Ph:13z_

All coded modules ire placed together alo a with

a sample data base. This pr 'i.aes a phys;ial -eaization of

the desiqn. integration of -ll the pa -s, syste3 tsstng
azcordiaq to the system test -lan, ari :)_-formance evalua-

is accomPlished. In many --ases a goo! deal of :iesiqn

and ==-implemer:a::on may take :acz a-: :ais time to for--a

the aczual system tc confo: to -h- -oci:ica-iors a .

init:ia? requirements.

1?

2.6fwr.%Q~-to

C Everything that happens after the software system is
finished, delivered and finally accepted by the user fal1L

into the operational half of the li-fe cycle.

a. maintenance Phase

Tauseworthe offers a definition of maintenance

as "alteratlors to the scftwire durng the post lelivery

period that do not requirs a, re ntn If th fwr

avelopaent cycle" [Ref. 26]. HIe also viezws the maljotenance
phase as any software related iztivity, principally suppor-

tive in form, whizh keeps the software system ,pecational

wi'thin its functional specifizal.icns. r£-B main acti-vi-ty of

:intenar-ce programers is correcti-ve In nature, c-ommonly

referzel to as debugging. Taasaworthe considers en~hancements

as esseatiallIy changes to the specifizatons which enabla

the: software ,to perform ei-ther a new task :)r a different but

s~milar +ask. In each case the functional scope of the

proqram charges.

Swanson (Ref. 27] listinguisacs between zhrsq
types o)f software m-intenance; zorrect-fvs malrtenan~a, aliap-

-:ve maintenance and perfectiie;rr maintsaince. Corective

xma--n:en3ance is per-formed in :r socnsn to fai-lures such as -he

abnormal termina!:J.on of a pro)gram or the failure to- sz! net

perfcormance criteria. Adaptive ma' nteaaie sorfuidn

6 :espcnss to changes -r environments suc-h is the int a ia2tion

cfa g eneraticn. o f system 3aaT-dwa,-e. ?zerfecti-v? Maint-

naacie 's ner-formad to make th=- proaram a. nors e:ct~sa

iMplemeva-tatiocr.. Fo)r exrp -o -mprovs or:esi.a e:ce
4 ' C --o add~ new fea--ures.

0O--her uthor -.-S f --e 1, ma a a :2s haSsaoly twc

b a 13c c-: p -nren ts; mod--*:. t-- ns 1:1-
'I od f -ca i or. s arz any cihang=s to z gf :nc-t r s o0

Z

correct bugs and meet specifications. Enhancements are addi-

tions of new functions that wace in tha Driginal design but

never iaplemented or were adlel as a rasalt of an iteration

of the development cycle [Raf. 25]. godificatiDns and

enhanceaents will be the terms ased in ttiis thesis t3 refer

to scftware maintenance.

A more accurate iad defiaitive model of the

maintenance phase of the software life cyzle and of the life

cycle itself has been proposel by the Roie Air Development

Center (Ref. 28]. Figurs 2.3 illustritas two important

items concerning this model. rhe first is that the process

of software development is highly interaztive (indicated by

feadback arrows) in order to incocporate new requirements

and changes to software specifizations. Secondly, and more

important, it emphasizes the importance of the maintenance

phase. The model indicates that maintenanze phases are to go

thzcugh the same iterative steDp shDwn fo. software develop-

ment, that is: analysis, spec ification, design, zoding,
validation, test and integratiai.

b. Decommission Phase

During th - s phase in asseszeat of -he softwara

-s made :o determ:ne its further use, cr to be rePliced in

i-s entirety. This may be due t) compleatL7 new reqgiremen-:s

where_ it is considered more economical I treolace th a s 3 f-

ware then to modify the existia system :- where procuremen-
:f ew hardware dictates a new sof:wara system be !.vslopel.

B. SOFTWARE MANAGEMENT

Software management is c-itica to :ria succ-ssfuL opz_- 4-

-or or a largs s-ftware system. Thz i-cisions made V

ma-a a4rs of weapon system softiae pro'~:-s will ni-an th=
i-'fference he-weer whetle- the fgna or:il is

IWW

PMES spUs ISIS Pt-l WtS

A ~ w A A An* *

a*u to r? ILF~LY ni
~~~~~~MO q~ c s*suwS?0 DC~W cISa Upaa; ILO

VWM

Figre .3~AD Sftwre ifPAZle
4TU

lo1"

a4n



I

or non-maintainable. Cave (Ref. 29] believes that: "Project

failures are generally the result of improper or inexperi-

( enced managerent and not the lack of technical ability."

Cave concludes that the sczessful development of large

software systems can be achieved in a ronsistant manner.

In =ooper's point of view ',Ref. 30] ! common stumbling

block of software project management his been that manage-

mant would always seek to ootinize the l.velopment process

in trying to meet budget and szaedule constraints. This type

of approach creates an initial design with little do.umenta-

tion resulting in increased iiffizulty In maintaining the

so)ftware and a corresponding izrease in Dverall life cycle

costs.

While there is no step by step process which will guar-
entee successful development of maintailable software, some

general policies may be stated that are guit helpful. Daly

(Ref. 31] lists several items tiat have ;)coved useful based

on his axperience in managiag softiar- developments. Table

II provides a listing of two different approaches. Daiey

:9commeads Method 1 in order to produce a cost-effctive,

more maintainabls software proiuct. He also recommends the

aoplication of strict manag ment objaztives to guide

development.

1. DOD ianauement Policies

In December 1974 a 30) Software Stsering comitee

was established with a goal of ids tify-ia criticaI weap on

svs-.em software orobiems and -:o recommea oolicies foc taei:
so u-iot.

To support -his committz-e tte 1iII.S zorporation, in

4 on junction. with John Eiopkias Univ.-msi-y (Ref. 32,33]

:onAuc-e. a study of weaocn jsytem sof: ae- manageea-. :t

was ccn cl uded that 1...the uajo: coatL bu-ing fazto- to

ws cn zys-- problems is tae Lack of 2iZci I_- - anj

23



4

TABLE II

Software Desipn Methods

Iethod 1 Method 2

High level language Assembly language

Structured Code Tight Zoaplex Code

I Composite design(hierarchy Large blobs of code
of small segments) I
Parallel, top-down, bottom Bottom-ap desian

up Jesign all optimallyused

Simole data structures ani Tiht, affecient, ta
work areas (not) tightly structazs and work areas
packed svery bit used, no data

Team approach to design One program-One man
(egoless programm ig) coacept

i5B's structured walk- No detailed technical
throivh for reviewing review of design or cod-e
deta-. desiqn and code

Three seperate teams,one Origin. coder tests,
design, one :ests, one integrat a and helps
evailates evaluat- his progra_

Complete set of hierarchy Detailed flow charts a.d I
charts, sequence charts ge.qaral aar-atives, ao
dat.a maps and narratives,
well commented listing Wiha cDMnlts

Detailed test plans for No formal test olans
all test phases

Program man-:ained by 30 ?r-goran _ntaineI oysenior prcarammers _..xperi-_ned programmers
or -ean=tains

Only commercial ?xtensiv- non-c-'m_ rncia
q.ccuenta:ion generated --chnial a mozndum
Dir:_-i develooment isnerate a d placs! I

I S=zc management Nc manien- cbjeztIveso bjec-ive szbis~
tci-de jeveloomento b Z -S

24



eaginee:ing rigor applied to weapon system acguisiticn

aztiviti es."

The scftware management steering zommittee iacorpo-

rated this and other ideas iato i cDomrehensiv . plan to

include policy, practices, pco:edures aad technology initia-

tives 'Ref. 341. Parts Df the plaa are intended as

supplements to principles stated in DJD Directives 5000.1

and 5000.2. The first maintenance mana;sment polizy states

that "Ease of maintenance and iodification will be a major

consideration of the initial Iesign."

Two techniques are used to prDvide management

control to weapon system software. These ace design reviews

and configuration management.

a. Design Reviews

M-L-SAD-1521 (USAF) annotata_- and describes the

requirements for the following technical reviews ani audits

on computer proqrams:

- Systems Requi_-ements Review (SRH)

- Systems Design Review (SDRi

- P=:liminary Design Review (?DR)

- Critical Design Review (=D.t

- Funztiorna. Confirma.ion Aa3-.t (FOA)
- Physical Configuration Audit (PA)

- Foral Qua ifica- ion Review (FQR)

so dare maintenance gui3occk lefE. 35] ?r:7riie a
suDiplemnt -:o .IL-SO-1521. iesz-ibes i to oe -=._ n

-..- o conasleration in order -: op-iamiz= t-2 mai:ntai aaoi-y
of scftd:er-.. For o ci-4 ic I=fin:I r.s n any of ne aoovze

i:£ms one is =efer_ to stan..

e



b. Conf iguration Management

(Con fiquration manage ment consists of coafigura-

tion il entif icati on, contrt), status accounting and

aiaditin;.

As part of the pro:)3sed reqaicaments assigned to

contractors for the development of weapaa system sof~tware.

MTL-STD-1679, Weapon System Sofftware2 Devael:pment, states:

The =ontractor shall e~tablish, afd implement the
disciplines of configuration management; namely configu-
r at...oa id antificat ion, :ofigucati:r± con~rol anad
configuration status accountiag. The zoatractor s~all be
coqnazant of the requirement -or long-term life cycle
support of the weapon. system software. rhe appropciate
degree of configuration maniaent snail, be 4pp1edto
ansure completely accurate :Dorrelation between deszrip-
tive documentation and the? prograi in order to
fac-ilitate post-delivery maintenance by software support
personnel.

Configuration II i t if Ic=ati4ona-- i vo 1veas specifi-

cally identifying and labeling -the confLgaIration items at
Sezlected basellaes -1u ringP the1 softsare Life cycle.
Baselinas are refgernce points or plazas in the levsiop-
M:tent of a system; a baseline is formally Isfined at the end

T: each staqe in the system Life cvy 1:. For example ths
zu ica b-sein e is tvypica 1 thea r _z4u,6.me nts S p-a=i f ica -
-- ons adocument that o ut I n e s i-rms bot6h the bayar ann4

Tevelopar can understand and a grez to, ?xact-ly wat hes
zyst em wi-l dc. con fiqurat oa Items are :a= 'rdiv-duil n-

4 :e aat, together, defin:? and des=:.-be the ba s,:?1 n
r ef . 36 1

C onrfI*j- ~r a .o n cont 0o1 ~r 0Vide I h sin 3 z

manaqe4 :hangis - he (-o 4?:w a e)~ onfi:11i-atiop. L;ms ani

_.nvc~ves three basic ingredients:

" 'c:-.umentation .(Such as -,td m -I::-.M VS f:s 3 1r:-
S U 0o r t t a eh n -c a. a n d3 a t s:~V Q -n a >L) :7ca
:Orrna-... Vrco-:n andiFl 13.i 1 O:s:I4Ch ca n z
to a soz"twarz system.

" An O:'gar :za..4on a!. b ody -)7 f: 0r Ta 1 eva a n
oro)7*v"n~ 07r 113al)pr oVing I D:opoSe::ezea ot

ware sylstrnq.

253



Procedures for controll1iag the aa:aal changes to a
software system.

software configuratiJon status azcouat;-ng proviiles the

mechanism for maintaining a record of how the sof tware
evolved and wherl? the software is it any aurrent st ag a of
implementation. Software configuration iaditing provides a
means to determine how well the software product matzhes its

associated documentation. (Ref. 36]
DOD Directive 5303. 29, Maaagement of romputer

Fasources in Major Defense Systems, states:

Defense system computer CBsourC-es, :-cluding both
conterhardware and computer softwacre will be spac-

* The primary objecti-ve of software configuration

managemant is the effective managemeat of a software

System's lf cycle and Its -YOv;-vag configarati;or.

Zonfiguration is the fi-nal foui, arragaann or design of

the soft ware (Ref. 36]. rh - imPor t a ncea o f corfiguzati-on

management is th -t givss one? the ab4Ili*:y n:o manage change

rur~ng the development orocess. tf a *!:ogram ma-4atenancs

manual iAs bei-ng 1 -esi4qne-ad i r co)an ju n :tLo n wi h an d as a Part
:- the snftware system deveIop-irnt, -zhen Lt should bez placsd
under -the disciplize cf ccnfi~azrtion maaaqment. hags

ithe iesiacn and contenlts of the maInceanice manualI can .

maached or dcrectly 1 -,kid to : h an; i .n -,he s :f:-w a :7
4 ssem. Thi-s 4-s the n~en-: of 0) D Dirsc-, ;r 5030. 19.

2. DOD Direct-vec: ____3-a7---d

ioi sani :=ocedirs3 for a 1 4isit6i-'on o f w a r : n

sytmsotaeare d1:::erev: LnI mos:- :a'=!eCn,: o n AC S
ise no ou::: 4 automa-el d iaa Ir Ms:: -;Im:

(ADZ) . 7he 1 --- n':c-: -'on made t~wsea ahs wC cat:Ag-,: e :oz

aij-oma-:!d sysvsm- --* a *i 7=c:sult :of 'he 1165 'B::o'C

A:,:" (Pub!-i,- law ?9-3C^6,uO, U.S.C. 759).

I7



The Office of Management an Bulget (OMB) and the

General Services Administration (GSL) adninister the Brooks

Act guilelines. ADPE is controlled by this Act aid falls

under the cognizance of tie kssistint Secretary of

Defense(Controller). Weapon system software, on the other

hand, is excluded fronm the p:-visions of this Act aid fall

under the jurisdiction of the 3ffice of tie Under Secretary

of Defense for Research and Engineering.

There is no centralized sourze of guidenze with

respect to weapon system software maintenance for DOD

orgainzations to follow. Thera are many directives, regula-

t'ons, specifications and standards that impact on weapon

system software to varying degrees. rhe most important ones

* are described here.

a. Weapons Standard W3 8505

WS 8506 is consider.d to be a comprehensive and

very god specification for the docum.ntion of program

development, particularly in view of its early publication

date (1971). One of its strong points is:

A strategy for maKing Ba::n level f documentation
:esponsive to the next uoo_-r levl- (subDrogram jesign
under Program des:qni whi h repr.sentrs rDesigh- i-a
use of too-down design prior t; the -,Ila this term was
_n vogue (Ref. 151.

* it dces not include such programming techniques as struc-

-.u-ed orcqamminc, but this t-nchnique wis not dsv-lopsi a-
:h'e tine of its publication.

its weaknesses iz:Iude a .ac of chan=2g pr:ca-
4 dures, documentation standards f r ai:- ams (-- uch a s

Hi s: arch y Input/Out put or HI?)) and :_-essicn :ss:in

(Ref. 15 1.

a

a2



b. MIL-STD-183 (USAF)

MIL-STD-483 (USAF) 'Configuration Managen-nt for

Systems, Equipment, Munitions, and Zompat-rPrograms," 1 June

1971, iefines the entire speztrum of aztivites assoclated

with controlling changes (a =ritical nea- for maintenance

work) to computer programs.

C. MIL-S-52779 (AD)

MIL-S-52779 (AD), "Software 2uality Assurance

Proqram Requirements," 5 April 1974, rsji'res that a 2uality

Assuranze Program (QAP) be implemented specifically for the

developaent of computer prograss and related documentation.

Even though this standard is concerned w'th the development
I phase, it is important because it can directly affect the

guality of software documentation.

d. SECNAVINST 3560.1

SECNAVINST 3560. 1, "Departagnt of the Navy

Tac-icaL Digital Systems Documentation Ltandards," 3 August

1974, ilentifies, names and de scribes that set of dozumerns

ncessacy to supprt both the ._evelopment and mainzenancs of

ta ztical softw a-re. A review of 3560.1 was conduzted to

-_ezermife how well this standard supports software ma.nte-

nance acztv:'y (Ref. 371. As noted by this review th-zs a=e

some positive and negative aspects to tas standard. SomE

po sitivl aspects inzlude:

- Aoulicable document stat m_-ts.

Rezource budget-s (time,spaz?)
-Numerous exampl; s.

-Content check l-ists.

-_-:ace desaz:ptiors.

- Tet coverage.
- Det aied Table of Con-enzs for aaci ec:_ca-ion.

z



The deficiencies of the staaard include a lack

of requirements for the subject of traceability, a need for

increased emphasis on validatii, and the use of inconsis-

tant or non-defined terminology. the review indicates the

standard seems more orientated towards s~ftware development

then to softwre maintenance. The review also notes the stan-

dard's stronq orientation towids the .ary's tactical data

system. Scneidewind, [Ref. 37], r.cDmmends ".. more

qeneral orientation might be preferable to achieve a wider

q applicability to a variety of softwire systems."

6. DOD DIRECTIVE 5000.29

DOD DIRECTIVE 5000.29, "Minig.ment of Zomputer

Resources in Major Defense Systems," 26 pril 1976, estab-

lishes DOD policy for the management and zontrol of zomputer

resources during system acgui3ition. laintainability of

softwar-_ is called out as a major consideration during the

iniial design. It also directs thit saport items required

for cost effective maintenance be specifaie as deliverable

items. Documentation is listed and Iefiaed as a support

it em.

f. MIL-STD-1521 (USAF)

IL-STD-1521 (USAFi , "Tazchcal Reviews and

Audits for System, Equipment and Computer Programs," 1 June
1976, orescribes the requirmits o:)z tai co-duct of rich-

:ical :aviews and audits In :onjunction w-h te zumen:s

defined ;- : :L-STD-483. Di_:L~on is pz:vtidd ccnceraing tha
-:v:ew ind audi-: of computer p:og-an coaf!guz-:ion it-e-ms and
:hei asscciatsd documentation. Eaca tyo_ of review or audit

:d desc:ibed fn an apendix zo the stan!a:a and can sarve as

basis ror checking comr! Lance 4'a naiai* a abi:v
-squi_-ilents. The documenta-ion discussai here is :aia--ei

.noe wa.= sys-m :es4g re views :e: 1cwr6as tae

d:cume.-aticn o: urzgqaa 1i.gins.

33



g. DODINST 5000.31

Ci DOD Instruction 5 30.31, ,,2 t arim List of DOD

Approved High Order Programming Languages (HOtL ," 24

November 1976, specifies whizh HOL's are iapproved for use in

conIunction with DOD Directive 5300.29. Although this

instruction allows for certain exceptions, it attempts to

reduce the proliferation of R)L'S in lafense systems by

limiting new development to six approved languages: CLS-2,

SPL-1, rACPOL, JOVIAL, COBOL, aad FORTRAN. Its major impact

is in the standardization of zompilers and in prewenting

each DoD activity from developing its own unique programming

lang uag..

h. MIL-STD-1679 (NAVYj

MIL-STD- 1679 (NAVM , "Weapo2 System 3oftware

Development," 1 December 1973, establishs uniform require-

ments for the development of ieapon system software within

C' DOD. Strict adherence to the prowisions :f this standard

"wIl help ensure that the taztical software so laeveloped

will be imprcved over current ¢_ersJ:ns of tac-ical software.

MIL-STD-1679 includes developments ia programmin tech-

n.ology, and management such is stcuctired programaing and

iesign walkthroughs, which have occared siace the release of

WE 8506. i- stipulates the use of higa orler languages and

=pecj-...s th.e use of =onfi-u:tion mana ement -or corre-

• ,a,: *ng documenta-ion with hae prog.-an :o. m a atenancS

purpcses. [Ref. 151

31



A. STRUCTURED PROGRI MiING

There are several definitions and goals of structured

programming. Some of these goals relate to the design and

tasting of large software systems. ona ;oarticualr goal of

structur ed progr-amming is to o)rganiza and di-scipline t he

Uprogram design and coding pcozass in ociar to reduce logic

type errors (Ref. 38]. it is generally a::cepted thiat the

goals of structured programming inclula thiose of software

engineering. In particular these goals a:-e: modifi-ability,

=* f fi..ciA. _n c y, reliability, aa d understandibility o f the
p:o)qram code [Ref. 39 ].

What must be shown is how struztured programming

supports documentati.on. This i.s not easy to do because

structured proqramming isn:), i Universazl and well defined
cocet It'=s defined in miny places, ',1-f. 39,40,421, blit

7-.1 always c:rsistantly. However, it-s essance is fiywell

unders-tood. I t ist~e pZacr4::g 0Z of prograMMn*r~ USin1)ga
unmited zut sufficiznt set of -oto onsz:icts Fiqirecs 3.1

and 3.2 illustrate the five bas--c- control 7ons-:racts as

resquirel by I-L-STD-1679.

Ylyers (Ref. 18] provides a L--st of se=vze basic alementS

6or a structured p:oran whicla should bs apolied e Ie

_-educe ozogram c:neivazi ocomot:e z.J~azizy c: :uh- zv

repr-og:amer.

*The ccde is ccn structr zc0oM s:1u=enzs ft basic

*Use ofte GOTO sta-temen-: is A-void w 4n anve r csible.

T ThB cod-= Is wri-tten in ani acre orabLe stylei- (e .US=

mean;Jngfu2. v ari-ab.e na mas, airci s t a -ie n a. eS,
avoin --Qanquage tri-cks) .

**Th coade I :S Or 0rerlv-1- idt n "Ie C soa :1 :i- 30
Z~eks in e Xecultion Seqaenc= ca a ae eail .3..We

32



1 ,
Sequence If-T en-Else

I I I
Proces A F Pr~c

Pro.ess rcs
-- ----- I

SEQUENCE IF THEN ELSE

Do-Whila

& - 7-, -9

IPro:ess

- --------- I
? r

F

*I DO WHILZ

m 3

I33I
m

4i

* Figure 3. 1 Basic ZntrDl Cs3t_-ucts.

• 33

4.



(g a DO statement zaa be easily matched with the
N statement ending the loop).

* The.9 is only one point of entry and one point of exit
in the code lor each module.

* The code is physicallv sa qmente on the listini to
enhance read.b. y.* rhzexezutablenstatements tor a
module should fit on a single page oE the listing.

* The code represents a sinple and st:a-ightforward solu-
t--on to the problem.

Figure 3.3 provides an example of-struc.-ared and nstruc-

t-ared coding. A structured progrim is structured in two

different ways. First, it is structured with regard to flow
q of contrcl and execution of the progran. Second, it is

physically structured by the use of indentation.

Another way of viewing stra:;tur.d programming is to see

it as those attributes of a prograa that contribute to the
4 readibilty of its form. For example =oasider the develop-

ment of a file management system. ObviDusly one required

function of such a system would be the cipability tD search

for a given file identified by a specific name. Figure 3.4

illustrates such a function as coded in the recently devel-

oped DOD high order language ."A (see *Ref. 44] for details
on the ADA language). As can be seen ia Figure 3.4 struc-
tured programming makes for a nore readablS and discernible

sequence cf code. The main tenants of structured prograaming
are diso!ayed, that is; hierar.iic relati)nships between the

lines of ccde, a consistant indenttion policy, and

begn-end g:oupings which aaka.i east to follow the

procram flow. Comments are ased ex-ensivly to "atroduce

each new module and structure.

The -esults of srcured orograaimin are readily appa-
r-_n- with easy to read ccde aal easy to follow logic flow.

Functions and procedures are zonfined zo 1:screte areas :r
the program listing. The objective iS to nake the code, in a
v--ry meaningful and useful wiy, self-locum=enting, -his

zed ucing the neel f;r ext raal Ioc',i_-t describing -he

34



I

Do-UntiL

I I
7 F

DO UNTIL

I I - - ----------- 1

I I

CASE

Figure 3.2 Basic Zan--rol Constructs.

35

4!

CAS

t I
4

)L"
* igre3. Bsi-- o1Costucs



II

REa -I -U -------9-

IF GOTO label q 1 IF pHEN
IF GOTO label m a
L function B function
GOSO label k 2 IF FTHEN

label m M function 3 IFt THEN
GOTO label k G function i

label q IFrg GOTO label t 4 DOWHILE a I
A function H function
B function 4 ENDDO
C function I function

label r IF NOT r GOTO label s 3 ELSE)
D function 3 ENDIF
GOTO label r 2 SE I

label s IF s GOTO label f C function I
E function 3 DOWHILE r

label v IF NOT v GOTO labsl t D function
J function 3 ENDDO I

label k K function 3 IF s THEN
END function F function

* label f F function 3 ELSE
GOTO label v E function I

label t IF t GOTO label a 3 ENDIF I
A function 2 ENDIF IB function 2 IF v THENi
GOTO label w J function i

label a A function 2 (ELSE) I
B function 2 IFN)
G function 1 ELSE

label u IF NOT u GOTO label w 2 IF w THEN
H function I function I
GOTO label 11 2 ELSE

label w IF NOT- GOTO label y L fnction
I I function 2 214DIF

labe! y IF NOT v GOTO label k 1 ENDI?
J function K fanction

OTO Label k END frinction

Figure 3.3 Structured w3. Unstructured Coding.

zode. This has at. fffect o th desig of the document

a "Ied the P-cqram 'ain-enanze lanual al dil be iscussed

in detail in Chapter IV.

4

35



Sfunction SEARCH (FILENAME;KEYTYPE) return
FILEIfNDEX is

-Look for the specifiel Key reco)ri in the
-specified file, retaraing the inlex of its
-- posjtion

for I-T in FILE INDEX'FrRST..FILE INDEXILAST loopI Search t1le whole data base, Erom first to
.if FILE MAP(I) /= NULL

-ChecR data base for i null or a
m- la4-h
and -then FILE _1AP (I) = FILE NAME
and 'then FILE' KEY (I) = KT.-Y TYPE than
return (I)

end if;
I end loop-I
I raise BAb FILE;

-Raise an exceptioa if the desired record

Iend SEARCH; snot found

Figure 3.4i File 3earzh Fun--tiona.

B. MODULARIZATION

Modules are the bU4ilding blc:ks Df software. 300i

ii3dula: prcqramming usually rzequires thit external itr

faces, such as input/output, be is:)lat=ed intc Fseperate

m~le. dAJ.a -rgamn itself is -ths practice o f
imolemerit Ing so ftware inr snaLI, fun:t,_znally Oriezntatad
oreces. These pieces are usuallI impiemarta as- sub:: Lit ins,
functions or clusters .)f funztins. Eaca module -'s davcted

-cne :): mcre taszks related toa funzti~a; t:h= M3111= may

b - accessed -frcm onei or spla2 azze in -hs 3oftware

s tem.

Mc3 .a=4r. y i_= L-fti def 4-a S4 in -_erms oF pro-peroas Doss-

S:3sed by 11modu lar"-1 sy stems.

A rro ram I's modular i f it is vr ttn -'i~ nany :slar iv=_1y
indepzrnaen7 parts= or mci-l--s whir;_h i : well iefiner

37



aF

interfaces such that each aodule makes no assumptions
about the operation of other modules except whit is
contained in the interface s ecifi:ats.

Modularization c usists of divNdina 4,pro gram Ji to
subprograms (modules) which can be c93 ea separately,
but which have connections with other iodules...A defi-
nit-on of "good" modularity must emphasize the
requirement that modules be as disjoint As possible.

modular .programming is the organizin of a couplete
progrim into a number of small units...where there is a
set of rules which controls the charazteristics of these
events.

Modularity derls with how the structure ?f an ob ect can
make the attainment of som pur pose ea3ier. Modularityis purposeful structuring rR-. 3].

There is a trend towards defining modules in terms of the

number of lines of code they contain. Programming standards

frequently contain a somewhat negative approach such as
"...modules shall con-.ain less thaa X lis of code." Some

aathors feel that the size aspect is not is important to a

module is its functional aspect. In other words a small

zomplex module may be more difficult to understand than a
large well structured module. However, the majority still

favcr limiting module size, when possible, to less than 100

lines of code in order to mainrin mdls as "discrete"
sntities and to aid ccmprehension [Ref. 39,40].

There are many advantaqes to usin; modules. Parnas

[Ref. 24] argues -hit the most important aspect of nodulari_

za:ton is the abiliy to anticipate and esign for zhanges.
If the functlcn of a mdule chinges, that module alone has

to changs. I- -he need for a. funztion arises uing the

i-sigr. hase, a module wi-h tas fancti:a can be inr:kei -3
-he pcint Cf need. If an error in the prD ram is found, the

Probability is that its ccrrect:n :)wll be imited o one

Ao1le. Once a module has been tested, in! can be
S.erataly, it can be reliably used i eiff--r , oace--

th- pro;ram. rRef. 41)

31



I

Sinze modularization makes the struzture of a program

easier to understand while lc: aliziag functions and

processes, the need for external doruaantation is again

reduced.

As I final nots, there his to be a distinction made

between modualrity and structured programning.

This listinction is necessary bezausa program struzrure
I s a relatively mearingiess :oncept ia some programmina
1anguaqes, sich as p.a:n vaailla asseubly languige (a§
op0 osce to assembler enhanc-. with st:ong macro zapa-
blity). In contrast, oiilarity is usable in allAoma;-,s. Thus, the line between modularfty and structure
may be a tenuous one to waft, but Lt iS an impoDtant
one. Note that good modules 3ay or may not possess good
program stzucture and that bal modules ay also possess
good pro ram structure. The two subjezts are disczenable
(Ref. 431.

C. DATA STRUCTURE

In some programming languiges there are at least two

wiys of workirg with a string :f bits I- haracters. One way

: to declare the string as par: of a st:i:_u:e (FigaIre 3.5)

an thea manipulate the string :y name:

OTHER STRINS = CHARACTER_52RING

5 Sc-u:re DATA STRUC1'RE; b;in
-ae.r CHA5 Eapl S ofE G - tructurS

Figure 3.5 Example_ of i Datkz 5t.-:ucture.



I

A second method is to use a byte manipulating function to

define the desired string at every point of usage in the

program:

OTHER-STRING = BYTE(ZHARAZTER.SrRING, 5)

Suppose the character string aimed OTHER_37RING is utilized

190 times ir the program. Ia order to change the string

format ising the first method (Figure 3.5s, only one easily

id-ntified line of code has to change. in the sezond case
qthe = e are 100 lines to change throughout th- program.

Languages may or may not support such data structuring.
COBOL and PL/I provide elabor e data sTractures for format-

ring report data for printout. addition such changes as

strippi..a off leading zeros, insertia. a decimal point,

aiding check protect characters, and iaserting a leading
dollar sign are easily accomplished. it the other extreme

FDRTRAN and BASIC offer no data structur. capability beyond
( the array [Ref. 43].

Data structure impacts the areas cf s-f:ware design and

-war maintenance. One mtaodology, =alled the Jackson
m--thod 'Ref. 451, stresses dssigning th- prcgram structure
by f irt- !cckina at the data structure3S. According to

Ja.kson, an algorithmi C structare iS hiz1v r-elated to a-a
structu-e; progr ams that obey data strjture d;4 s:n wiIlI
have a more mair.tainable :oor am stIcture a we!l.
Dbviously different applicatioa areas hLa;r- dif-erent levels

need for data szructure ocic'ta"on.

One of tae noticable effeots Df ar so-war_ -ys-eans

t hat a"acr:'-.ms end up tr:-sfcrmin ata szurctu

4:tc an.ther data Structure. rh " s -ecu-ts i7 what Jackso

....s Str=Uc,!u= .chrsh."= r -c dr iF wha4t n s1 ;
m m c nz a prcf r:ration cz un a c ssarv zd_, lack ff s--uc-

tirec D.ogr=anmina icals, or i ak of :3 $on L I .

~~ is a re sult 0f nantenne orcie a

....I_ 7 U . . . : .



enhancement, where the changes have added info-mation or

changed the data structure to meet the =urrent need. Two

s-lutioas have been proposed in this area. Grouping or

"clustering" of data and abstract data tying [Ref. 43, 49].

Where a set of data declarations inte:relate, eithe- by

f Jnctioa or by context, they should be grouped together for

ease of understanding and modification itD one blozk. This

is the "clustering" ccncept. If a change is needed it can be

isolated into one block. Only those moSdles which ise that

q block of data need be recompilel.

With the concept of abstrazt data typiag, such as used

by PASCAL and ADA, (Ref. 44] all data nu=t be explicitly

declared to he of a particular type. zertain types are

defined in the language, but these must be supplemented by

prqramzer-defined -:ypes. Associated with a type is a set of

type RECORD FORMAT_1 is
record -

EMPLOYE NAME: a:ray(1..301 :f CHARAZT-SR;
E"'PLDYEE-FATE: float;
E .. LOYEE%-OUPS: inte =r :aa 0..99;

?ILE1_RECORD: RECORDFORIAT-

-. -- - - - - -

Figure 3.6 Example of an ADA Data Structure.

q tt:inale va.ues dhich cbjz:s :f a -:yp7- nay asun and

cf cperaticns which ay a e p-rf:e eiP =- n -h:t typ.

-F1 u: - 3.5 and 3.6 show exampl s of AJ. :-;a stru ctu.res.

kind of typing has th--e ziarazt-ristics: (1) "he

=pr :_-s of a type are ?efine d tl y aI -:ae S yo

ec-a-:ticn, nand if -hey chaaa _ they nt: :nly be :hngi irn

Z:1-2~:~ (2) )nly :he abstr:act a z;zoe-ia

al



be known to reference data of that type, with implementation

details "hidden" in the declaration;, and (3) strong type

matching may be enforced by the coipil r, eliminating type

mismatch errors as a reiiibilit y/mai tainability issue

(Ref. 43.4].

As -a final consideration, it is always important to name

data effectively. Meaningful names are always preferable.

EMPLOYEE-NAME conveys far more information about the data

value then EMPNAM. This supports the goal of readability and

the uitimat goal of having the program be as self

documenting as possible.

D. DATA COMMUNICATION

There are two basic types of data comnanication, intra-

program and inter-program. tntra-pcogram data commuaication
is esseatially communication between modilm.s. This can be
accomplished by paramenter li-ts, global (or common) data

ani a recent concept called a data "cluster". A claster is

where a constrained "semigloba]' data bass is sha=ei among a
limited number of processes or functions. 'Ref. 42,43,4]

A 0arame-e- list idenifies only ;hDse data items and
fo-mal parameters used by ach indivi ual module. Th =

creferrd me-.hod of inta-pcogram comialication is by the

use of a parameter list (Ref. 43]. he main advantage
rained -ha t -all data used by the modale are identifiLe

a-- isolated. I- is not possio-'e for ha nodule to have a
ii-priss effrc- on -he ccde whczh invokes -he modul=.

Grcoa' va=,ables are used for large lia"-ies f Ja-a

W=n: is not c nven nt -o 3;eci:y sara a : oarame:.r
" a: sn a c h p o or- f call. lost au-hors -=ccmmen- mnin-

iz-nq us.e of global data to: good m a and st::c-u-_-

:Oqrams. T? :-asn :r: liMited us- :s -ha a moia- may

lo f! -a. 110oa I vala i , #he :S c:n iaI Va L'- i was c--ii:a C o



the calling environment. This may lead to undesirable and

untracable side effects. [Ref. 40,2]

A side effect is cne brought about other than via a
parameter mechanism. It is generally considered cather
undesirable to write subprogr.ms, especially functions,
which hq.ve side effects. 6wa-ver some side effects are
beneficial. Any subprogra3 ;hich performs input-output
has a side effect on the file; a function eliv.ring
successive numbers of a sequaice of random numbers only
works because of its side effects; if one needs to coun_
how many times a function 4s called then we use a side
effect; and so on. Care must be taken when usinu func-
tions with side effects that the function does no- cause
errors in other sections of t:e program. [Ref. 4]I

The cluster concept is an attempt to fulfill the need
for global variables. A data oase and its family of manipu-

lating procedures is isolated f!co the cast of the program.
A program needing some or all of of the clustered data must

explicitly import it. The cl.ster itself can distinuish
betweer. data and procedures which may b. exported or no-:.

The side effect problem is al least isolated and bounded.

-C rRef. 40,42]

Inter-program data communication is :)ovided either by
passinq data flags and blocks through a2 Cperatin; system

c:mmunicaticn area, or by passii" largsr iolumes of Lalrorma-

tion o files. The UNIX concept of "pipes" Ja which

prqdefined :ies are au-omaticaly passed -from on= program

- h t h next is an exampl e of rthLs type of a-a

Communiation. (Ref. 47]

The proper use of -aza 7onaunication Clarifies p-ogram

r"w and tracability of processss. .his, -- se, a1-p:Is

t mai:nenance programmer's tnsk in tc c-r=c: z f

program errors and in his un1rs- dan z tje p:qa=-i'

documnt z:on.

43



4

E. HIGH ORDER LANGUAGES (HOLIS)

( High order languages are those computer languages which

are essentially machine (hardware) indeps.ndent. This is in
contrast to assembly languages that were designel for a

particular hardware architecture. For .xample, the INTEL

8380 assembly instruction set will not wDrk at all on a

Motorola 6800 based machine. ln contrast a standard FORTRAN

program can easily be used on any computer with a appro-

piate 73RTRAN compiler.
q Hig order languages tend to support the concepts just

discussed (structured programming, modularity, data struc-

ture, etc.) to varying degrees. FORTR&N 3ffers molalarity,

but is limi+ed for program structuring and has almost no

capabilty for data structuring. COBOL ha3 excellent, robus-
apa- bLities for data structuras. Other linguages have their

strong ird weak prints. [Ref. 431 Exampl-s of good i3L code

may be found in several referezes :Ref. 3,42].

Documentation is support-_ by High Ordsr languages

(HOL's) if the language is reaable. FO)~RRAN is linited in
tais respect because of its siK character limit on lata an!

variable names. Some HOL's, IPL for example, pc:vide nL

:eadabilzy at all. APL is very diffi-Cult t: understand after

it is written down, even by the persoa who designed the

proaram.

ADA, the new programming language sveioped by the
Deoarzmnt of Defense, promises t3 offec the best support

f:: jus- about all "he major softo.are _n: ne e::: princi-

ples. kDA is a large languig? since it a3lrsses So manv

-fferei- issues. Some of the key goals of .A a-: :isted Jn
!able III (Ref. (4].

The verall objective cf tas Deoartie - of Defense is :o

pTovd',e- one s-andardized lanquage for us- in al" :az:cai

=bedd=; syzt eMs. This cat o rTv ie s sS a rtial zonDmiz

4a



C TABLE EIIIKey Goals of ADA

PE DfLU~lTY
It is recocnuized that professional pco;rams are raid
are often then they are wrItten. It is important,

Itherefore, to avoiA*d an over-tersa notation such as
APL.I

IThis insures taechob-jert has a zl~arJly defined I
Iset of values and prevents =onfusion between logically
Idistnct concepts. As a conse nence many errors iaIdete:rted by the -ompiler wnizh in ottia: languages

woull'have led to an executable but inzorrect program.

Mechanisms for encapsulatioa, seperate =om? ilatio32,
Iand ibrary management are riacessary f~r te writing I

of po table and mantainabla programs :)f any siza.

0 IEXCEPTION HANDLIENG

IIt is a 1fact olf lifa that pcr)grans of zinseguencs
Iare rarely correct. It is nezessary toc 2rovide a
m eans whereby a porm can e constru:.ei9 in -a

Ilayered and~ partitoe d wa o that zo-isequences
Iof errors in one part can ba contained.

DATA ABSTFACTION

IExtra pqr--abi1it ana maintiinabili-ty :in be obtained
Iif tinla aetail's o the reptresentatioa of data can be

keo-: se~erate from the specication oE the lcgi*zal
Iop4era':_ons on the data.I

TASKI NIGI

For aany appli-caticns i s 1 mporta=nt :hi: *,he
Ip~ogrn be conceived as a sze-i-"s of Da:allel

c a:.F"- -es rather.,than just_.s asinjlB sequience
Iof aios.Builiairg aLr-~aefaci;_I is into a
ILancidge cther -.han adding .them on- vii =ails --o an

O pe=1an-Pc system gives be _ e: port:ability and

ITP m any cases :he bcgic ofL oart off a crogzam is
I~o_; --ee'er:9 he types o: vaiIas bsia.- m~n-Pu1=,tzd.

A Meclanlsm -S thererfore rl'Cassaxy frnecraan: .on4 I~~~, or latea Diecss cf OroQcaii from a iletnDaC I
I h.: :.= artiCulazly usefil 7Vor :e z B i n o 2



benefits by reducing the number of differant types of compi-

lers needed. It also promotes fimili-arity by programmers and

maintenance programmers. Improved progri2 zlarity iali read-
ability should also simplify the do:umantition. (Ref. 46]

?. THE11 PROGRAII LIS2IIG

Iff the overall goal is to reduzze the quanti ty and cost

of documentation ani improve its quality and usefulness to

'-h= maintenance programmer, thea it is highly desirable that

programs be made as self -dozuaantiig as aossible. in thi's

manner :)re car substantially reduce the raezassity t:) main-

tain multiple forms of dccume .tation representi;ng the same
logic. Mary authors advocate such an aproa thog

E structured, well commented prcgram listinjs. Myers raef. 18)

st at es:

Since we already have the zoi?, 1'hYlnot let it SerVe as-he loic documentation? . diin3 ocmtati-)n
such as a flowchart would be undesirable because it
would be redundent with -thS =ode. Reia-ln cy in. any t-ype
cr dozurnennatiori shculd be avoid-ad becauss 4t ra s
:ahe oances of conflicts. ?artharmoire, unless care is
rake: -o update thae documentit ion. (wri:.:-tx is More liffri-::ult If the logi-c documenr-!:o '-s pnlysiCalv 1 -Drazea
::om tae ccde), =edundent 1ocumqntart_:)a J -e~nbcm
tZotally useless after the zcoJi i's modifiLed a few t-tmes.

i1ass (Ref. 431 alsc agrees wit," this ~itof view sa:g

71he lcum=en-ts, wher, they do isare ;ene wally : Z-a
:a co._n:rrM ~ a seperate-' s et f re-r:=em e r.-_S w::C h
Soec:_V wha. 'he software iue~:o s t'o Cz17tl:n.1:ll Uo =atqu 1ntq, thezse rs ai r: n a: provid : r

c=e..vn Ir i.Ess :n fo r m z t in :ar th smf
:ea.y ~ess.S", in a -aa 1:'~e Cae - m n: W 111 C -.

:-s supocsed :o be a Cia"'f.na o' -ca 01 nate.r'_a.., ezr s
ulP ob. U iz q ='e -1 ?d z 07~ 1

Be ause .2icumanta- S~ SDat= from h c~wr
Dzcc::se: Zraquently out of d a e.

- prcgaza. In.cu ~ - . a~y: vr

::.n ie-r r;ch-: and wo'ul at:?rr -: nat= corrsc-i::.s -3

L&



This author recommends the heresy that the listing be
the lace where ;iost software documentation is plced.
Nearly every requirement for documentation describ2nq aprogram can be met and in fa.t exceeded by requiriag thesame information in the listing.

DOD, in general, supports this point of view and gives

explicit direction for what constitutes a well commented

program listing in MIL-STD-1579. Howevec, MIL-srD-1679,

SECNAVIIST 3560.1 and other directives reguire extensive,

dStailed, external documentation (i.e., other thin the

program listing) to be prodacal. 3ne valid reason for this

requirement is the need f: .eXtensiv design reviews

required by configuration management tazaniques. A second

reason is that, until the aid-1370's and the advent of

sofware engineering techniques is discussed in this chapter,

the program listing did nct convey a great deal of informa-

tion. & large amount of English text was needed to explain

the design ard structure of the software and its associat-d

data bases. Even Glass admits that some axternal documenta-

tion will always be required to ;ive an overview of the

structure and the software's dasign history [Ref. 43].

This "ext-?rral" locumen tt ion is iled at specific

users. Jperatcr's Manuals are nean: - o read by operators.

S:ec-fiaticns a:e meant to be read by ooth custoners (to

giv e -them the abi"Lty to determine chat the problem being

solved is tie one they want soivedi anl d-signers. Tes-

documents are meant to be r-ad by custoners, to daeermine
that proper re' iabi t y tcia iauzs ;a employed, an

-sters. The main prcblem assoziat.d wi-i Bxt=nal i:cumen.-

-a-icn is -thet it :requntly bcom-s inac:ra.e and Dutdated

aS maintenarce programmers make changes to the prcram cods.

ror this zeason mainte ncac ot:grammers tsra to zslay tore
an-d more cn the program listing as the sof-war= systsn gqts

cite4r.

L47



The listing is of necessity, accurate, since it is the
program in al, real senses oe the w~rl. For the same
reaso, i.t is complete. Thus the o,.ly accurate and
current representation of a program, in today's tech-
nology, is frequently the pro ram listlng...If th_ codeis c .nced, i+ is much more likeliy that the docu~enta-
tion ill LE: also. In addition, the explanations in the
listing will also likely to be readable by the intended
tarcet audience a pro ramm.;. They will also be in
plae where he nees mos to find them. The accuracy and
completeness attributes of the 1istin will also tend to
apply as well to the documentation. I.Ref. 43]

The main line of thought being developed is that recent

trends in programming technology, as presented in this

q chapter, have shifted the emphasis of programming dozumenta-

tion from "external" docuseats to the program listing

itself. A greater detail and quantity of information about

the program is now directly awailable to the maintenance

programmer. This has a significant ilpazt on the way one

should 1esiqn documentation as a who!=. Chapter IV wi.

d"iscuss this point of view as it applies to a specifi= docu-

ment, the Programmer' s Maintenaace lan-ia, and how i: should
be designed.

1. Co mm ernLgn

S!-. been stated that one obj-ztive to improve the

iocument;:-ot o-f software was to make -he program code
:--el: arf -eadable. Twc tachniques alraady discussed were

struct-~,': p:cqrnimiag and tha ise of hiia orier languages.
A h,. -ec*--iqu is the placiag of :oma.:s at appco)iate
Places w"-hin the prog ram code. One of -:a- main dvan -aqs

C a ccnSsz.n omm.n-ing p :iicy .s Z: inapendenze f-
- _ p-::.ammina i.anquaae used. Thert -e . v--ry few zomp -s

C':: o rz aow commenls :0 be p :I -i th e IS::no

[R-af. 4 1.
A sccnd advantage is that =omm zt:-.g closes the gap

-e-ween :cmpu-inc manage-s -on' comput--: Dzg_-nme-s. his

;ao de';K_" oc 7ecause of -he D gra.-mm's absolute 1e- 1z_



attentiDn to details. These etails IncIule such items as

assembly language instructioa choices, high order language

( statement type choices, flag initialization procedures, and

the design of nested loops with if..tha constructs which
"mplement the logic of the software system. The manaier, on

the other hand, must keep a "BiSg-Picture" perspective of the

system and be able to evaluate an Rlusive entity called

software quality. Software juility is oftan based :) items

sach as reliabilty, readability and portablity (Ref. 38].
Ia order to evaluate all these "-ilitis", the manager must

b -  able to read the program listing iad understand the

implementation of the software design without necessarily

beinq familiar with all the in' s and out's of a particular

program language.

Comments assist in putting more documentation 4n:o

the program listing as well as making the grogram more real-
ible. Comments explain details about th.? program that a e

no: appeBarent from the code itself. Tabl.- IV provides a list

Sff where comments shculd appear in tha program. One DOD

SiV :y, :he Iari ns Corp's Tactizal Systems Suppcrt

.Aciv-t' , has had a great A.al of su::ess in easing is

burden o: software maintenanca by implayisn:ing a letailed

=ommen--ing policy. Although AZTSSA's p o3rams are mainly

w c ten .n the lTavy's C1S-2 aaIg, ag, i: as found taas uch

a policy helped reduce the amoirit of -im. soent by program-

m4_-s cn software changes ia i-on to -he -ire sav i -Is

-'eve! by zhe use of a higa o-der lanagaig. (Ref. 48]

,~ '..:L .i ' :1 . '



"-" " - - - --

TABLE IV

Recommended Locations for Coiments

1. ht the beginnning of eaz- module lnzlude the
module name the current date, the module'sfunction, its'inputs and outputs, its limitationsand resrtrictions, including lssum :ions, its

arror processes and the name of .e developer.lajor modules should aliso include ths history
:f modifications: for each change, the date,
the maintainer's name, prupose of the changeand scope.

2. It each subfunction, whether it be a straight
3epuence of code or a logic branch or a begin-
.ed block, an explanati"Da of that sabfunction.

3. At each interface, a clea.r definit on of theinterface and a referznr_= for further infor-
nation about the other side of -.he interface
(where possible).

4 L. Xt e-ch qroup of functioaallv or otherwise
rela-ted declarations aa explanat-ion of the
-ole and makeup of the group.

5. Nt each declaration, an .xplinatioa of the role
DIf the item and the mearing, t any, of its
Icssib - values.

I 6. At each difficult-to-understand rogram portion,
an explanation of what the code os and why a

zcmp ex solution was ae::ssacy.-_ I3 s y



IV. THE MA1U A!O MM~

A. OBJECTIVES OF k MAINTENANCE H&NJAL

In order to determine hod a progranr's maintenance

manual should be organized it will be helpful to examine

some spe.cific goals that apply to any type of manual.

1. General

The first objective "s to enumecate those general

organizational qualities of writing and style that lead to
ease of use and readibility oE techni:al publications and

documents. There are several factors that insure the infor-

mation contained in a manual are is easy to use. These

_Actors can be characterized into two broi areas. The first
area concerns the concept that all infozuation presented by

the manaal be easy to find or locate. The -second area is the

concept that, once one finds "ae infornation, the informa-

zion is :eadily undErstood.

The factors that suppocr- ease in finding information

re co- sistency, pointers and arr a.aiment [Raf. 50].
Zonsis-necy is the orincipIe that similar objects (i.e.

m antenance manuals) conzaining the same nforma-ion (how to

unders-_ncd and change a comrpu: r prDgramm be prasennen :n

ienticil ways. In othe: wo=rs, all manaals shalid have

::entica I forma-s. readers f: the ian i-a kIow dnat to

x-: oect, how -o lock :oz specific inor2a: n and whe.re thsv
w'il indi.. For a program naint-nanc nanua' i wouli be

.... fu that details cn dat.a stcuc-uzes b= 'n the san - ocl-

t:on in each spctio -of the .naiial.

51



Pointers are essential signposts which identify

related groups of information. Pointers ire represented by

antities such as tables of -contents, ial.xes and section

headings of text. Pointers anaounce the presence and loca-

tion of information within the body of the manual.

Arrangement refers to the manner of presentation

used throughout the manual. The arrangemeat anticipates ways

in which readers might look f.- specifiz information. The

subject of a manual might typizilly be ar:anged by aiphebet-

ia or chronological order. Subject zlassi fic ation S

another method. For a program maintenance manual, the

arrangeaent might be related to the hierarchical deasign of

the main functions and subfu.ztions of the program or to

some external criteria. This zriteria coald be spezified by

6 documentation standards incorporated in dir-ctives.

The factors that support ease of understanding are

simplicity, concreteness I.-d naturlness [Ref. 50].

Simplicity is the concept that a writer saould use a vocabu-

lry and writing s-yle :har suits the intended readers.
Admittedly, one assumes that any paricula: person having the

nsed -o read a maintenance ninual cana anderstan.d fairiy

zomplex compcsitions. Still, the goal of simplicity is to

keep -h- -echnical "verbage" to a minimaa, while presenting

clear and logical flow of descriptive? information. In

addition, a dictionary or iposndix s oill be incladed to
Cp'Py d efiitionso any "Juzzworis" fo: clarificazion and
.onsisz anc y.

Concre-eness ensures :ha- v=re-D. scip-ions a-

More specii- -an ene-l!. : a -o I[) a .
'.-arams and oc-ures be pzowided ft= DzaplificazL:n an!

_-n.. F o roram Ma a 4na. a a he b s z v:)

of diag.ams -:c use has seen a "ong his fy o: ccnt=oversv.

NSSi-S=Ta DE .A~ c aras, a3cTz othsrsz, :1!7 s- :ne .1o.3-

52



usage :Ref. 511. New developments saob as structured
program design languages (PDL'sI , aatomitezi graphic packages

being used to supplamsnt verbal des::riptiois of the software

[Ref. "9].
The ccncept, of naturalness proviles the realer with

the unfolding of information in an orJlered marnnir. it

easures that readers can verify they are on the rit track

and will ultimately find wiat they are lookinrg for

CRef . 521].

q2. Record of De sin

The second objective aE the progrimr's maiatenance

manual. ;s to provide programmers and management a rzcord of

the phi4losophy of design ani hiLstorical Izevelopment of the

softwarq. The manual must inclide a Conz:qte represgntatio-n

off the software design as well. Glass 'Ref. 43] i.escribes

four catagories of docamerts wi-Ich z:ouli be included as part
of a maintenance manual.

DESIGN NOTETS

Design nctes explain anow and why sections of tas
softwar? evolved into -heir Present stlte. . They sho)uld b~e
Drspara.n -in scrne sort of stanaar d format, ::esd :,hroa-

zlyandf cross-indexed to -:he zrga oiz. They jo iot
have t be detailed but shoal! 5r-ovidea. :zod ov=erv-.w o.-t1e cocet suprtnIzpr ular desl~a -approach.

*PROBLEM aEPORTS

Ptubing reot r r=e=orI= of opob2.ems sn=Dunz-;
shoull a~szj:be t'-= orcb~lim

and - ltn- solution. ,hyaze _zestually D'a:- d
4 oe_,.uar,,aat hiStoric file once tna final "21263 n isflxed "hev

a:~ x::ee~. useul n nslatnc ero3 ti at occur du g-,

lmpzrzvqenn r-iports are sug qsti~n3 and coilsc -on
id ~eas 11 for uturt- chances tc oe ln: oocat'en_ -_ts n

sot~~es te.;hey can bze<-aj*Cr irnpro'iee-^ s or zoq=i
a-Y reaso-n for 16inr tchis is to pass :;c il I deaE;SZ-

desinarst4-c .-e main-:9rance pro)gramMe-r3. rhese i:oeas may be
nen '.when alirgn --nhancena-it§ as a ~e~: cca::ge in

53



*VERSTON D.4CRIPj ION

Version dqscr4.ptions ire numbered c bangas thatC dascribe the modificati.ons and anhazncemeats added to a new
release of the software. Each numbered change should have a
complets list of the changes where they were made ia why,
a list of thetproblem reports clcs-ed ani1 a descri.pt~cn of
the impact of te charges on tne usears in the user's terms.

The structure and descciptioDn of t:he software systsm

design is best kept as 3iiple and straightforward as

po)ssible=. BefJore the advent of structurel programming and

structured design tools (such as Program Design Laaguages)

'here was no standardized manner -.o reprasent the software

design. This i-s still a probleu today, especially when ons

desir-es to have "procfs of correctness" to determine that

the software is free of errors :Ref. 49]. rhe best that can

* be done ~sto use a combinati:5i of items such as diErarch-

--a blcck di-agrams to list the major modules and their

control/data flow relati-onshi-ps, groupLng o f da ta ite m
dsscriptions into "c-lustears" based on usag:e of the dita, and

::odin'Pg the design with a wzell organized, modula:rized a:,d

readable high order language.

3. S ippr7 Ma -enance P=:o:rammer's risks

The programmer's maiatenance Mania- should be ths

s-nale iocuwernt thaz programnecs rse to> re=fer to frsof,-
Wire mairn.,enarnce ac--Lvities. rhae zinua2. has -to be zomoiete=

:nthat it Must contain =3L the iar::-nat::n nazedi by

* PDqramie--rs to acmls, :h:r:w r-fl-ary ts

ccr=ecn:inq er:0rz (mo dificat;-oni andi aiidLI new cailai'- T Z

0 nh an ca me n--).

1To supoo:,: the::se t-ask3 zhe mania! shouli be= a well

4 oraarnize1, concise and thcrouca- srisf -he owr.
I-- mus- contain botih an overltll m-s-gn v,-ew and a =-cee

detailei procedurs by ?rociare view. 1: aas --o deszcibs l
a!'- danai itsms inpune'i to tl,-= Orram (~f~a/a~)

4'. zrocceSses De::orm sd on nb lah:a, ii b



range of the output data. In a real-time contrml system

where the software performs c:atrol functi~ns based on the

parellel processing of data, the logical control responses

to various da-a inputs must be 3pecifiel.

Data structure and organization as to be described
in detail. Enumeration of lita n-mas, descriptions of

tables and arrays and how they are usai, initialized or

otherwise manipulated by the ocogrim is of primary impor-

tance. Cross-reference listings, which list each Iata item
and every mcdule, function aal procedu.. where that data
item is used, are valuable aides for understandiag the

p:oq ram.

Finally, two qeneral giidelines mast be kept in mind
if the manual is to support :he tasks Df the maintenancs

pq::-a,,1 er. First, The manual must provide for :omplete

tracability from the user's ooerational :eguirements to the

a=-lual program listing (lines of code) so that if a raquirz.-
mant chan es then the approiats code can be zorrectly
chanqed, deleted or new code added. Sezoad, the manual must

bze easily mcdif-i and the cha-ie recocde properly in order
to reflc -. -e changes to the software. if this is not doni

the manual sccn bec-omes outdarted and aseless as a iainane-

nance (ol. [Ref. 43, 51, 53]

B. DEPARTMENT OF DEFENSE REQUIREMEUTS

How the ojectives of a n airt ena c e manual are best

ulfid -s -the main topic of this zazs4s. DoD :irrent2-v
:?quizes a copy of the proqram i.i:Laq and several

_1iopor-nq dccuIe-nts for :eprsen-ing te program desion.
4 Different DcD a gencies have Ierent q 1iraments fci-  rocu-

mr.na-:n: and various names Poc ind.vilua I documents. The
DoD dociments briefly lescribed: here a=a f:om the sta-da:d

rh Lt _;_=_=c:_-'bes a P aia-:nanc? liaial for all 1DoD

53



activities (DOD STANDARD 7935.15) a d those U.S. Navy stan-

dards relating to software maintenance documentation.

1. kr~qraR_ Lintenance .a1_al

A description of the DoD requicelents for a program

miintenance manual is presented in DJD STANDARD 7935.1S,

"Automated Data Systems Do: umentatioa Standards," 13

SepTember 1977. The standards main ocientation is toward

documenting larg= data processiag syste3s, however, it can

be used for Imbedded tactical :ontroi systems as well. A

copy of the format for the Program Maiatenance Manual is

providei in Appendix A.

According to the standard, the Maintenance Manual

(PMM) is to be divided into four major s3ections. The first

saction s required to give a general lescription of the

program; its purpose, history of develpment, and define

other documents used to support the program (User's Manual,

etc.). The second section contains a system description to

include applications, functioas, input/output and informa-

ton on summary reports. Details and cha-azteristics of sach

procedure and subroutine tiat would bB of help to the

m "ntenarce programmer are to oc stated. Items such as data

record types, table characterisirs, Bxlt and branching

orocedures, interfac es, descriptions -f working ari output

ies must b; specified. Tha third section is to Jescribe
the cperating envircnment to include what support software
is nee-d. This section is isc to oon-ain a compleze

d-_-crio'prcn of -he data bas? as well as specifying th_--

s-orage media for the data basa (tape, A:-zk, or internai).

The fourth section is to contain informat-on on specific

ma.nrten.-ce proc=_durss. This will includle information on the

being of functions, subroutines and iita records, a ong
w -4: -ha prooz=ammi standards itilized. This sectio s i o

zon-air. a ccry' of ,he program 1isting i-self.

55



0

2. P__ r am Desgrjition Oo:ument

The Program Descriptioa Document (PDD) is required

by SECNAVINST 3560.1. Its purpose is to provide a complete

technical description of all proceur.s, functions, data

structuras, operating environnant, DD-:ating constraints,

and data base organization of the software system. rhe PDD

is to describe and completely lafine tha basic program logic

and program procedures for aa:a system control subroutine.

Tht PDD is also required to be directly related to the

program design specifications whi*h are the formal func-

tional requirements of the software systan. The PDD is, in

essence, the Navy's version of a DoD DrDgram maintenance

manual. The PDD does not contain a copy of the program

* listing or a complete data base description.

3. Data Base Design Docume_ t

The Da-za Base Design D:ument (DB)DD is reguired by

the same instruction to provide_ a compl.te detailed descrip-

t'on of all common data items necessary to c a.rry out th

functions of the software systn . :omm:a data is definei as

that data required and used 3y two or more subpro)grams.

Examples of common data include constants, indexes, flags,

variables and tables. The DBDD is to be based on -e func-

riona or perfcrmance specifications. All termi-o1ogy in "'A

DBDD is tc ccnf=orm to the p.-oaramming guidelines of the

P:oqram desigr specification ana the oa-:i'zular pr gcamming

ianquaqe em ioyi. Tha DBDD has to g;-= a- o-ganizeA,

:-taiid descrio-icn of all i-ta obje:ts -t include such

C Zac te*SrtCs a s 0urpose of a-e iata oj ,fid name,

:1 e, :meric tvye (fixed point, .loa--n) :Ing= Cf
values, Lzitializad ccnditiot. A c-'-~~c sting S--

e=ach ccmon iata i-m (table, flaq, e-:.) to each p croam cr

s4ibprc--irad where in is used or 3et : i -* - oov::e:.

57



4 .4

( The Program Package Doz-umeat (PP3) is designed to

consist of all the program iaterial items such as card

decks, magnetic tape, disk packs or priated listin; of the

software instruc+"ions. The PPD is to include an error free

listing of a compilation of the source program and any data

which is necessary for the program to run properly. Examples

o-f these data items wculd be aliption data, data file cons-

tants, set-up (initializations data ini program paramete-

values.

5. Problems with DOD's aeairements

The DcD approach, as standardiz.e i-n DoD STANDARD

7935.1S, SECNAVINST 3560.1, avi MIL-SD-1679(Navy) are all

based o-. the supposedly "gooi management practice" of having

tha maintenance documentation of a software system be a

completa set of English text. Information conceraing th-

( proaram is compiled into volams tiat, : complex systems,

can reach several feet in width. All tais text in.f:cmation,

as briefly outlined prevviously, gives a system overview,

_XDoains each item and structure in the system's data bas?,

shows control flow, data flow, arcdule int-:facss, and major

fancticas. All this information, in and of itself, is usable

by the maiz-enance programme:. izwe-z , placing I- in

seoera-e vol-umes is not the be st way :o presnt i-. Ihis

information is much more valutoa to ttb p_: g_-ammes ihen
"-eq.-at -=d into 1h= pog::am I .stinq. n -ei2-q 2'

Dczumentaticr. in:ms-ion a aot s-of-war: sys-tem osiong-S,

i most cases, ri the listin-g of z Cgram itself."

[Ref. 531 There are three key :easons way !ocumntatio-., -

"ae ratmst ex-nt ?ossible_, saould be placsd in the
o o ra m 1*S- r.a.

53



4

The first reason is that proqraxzac3 tend to dislike

writing documentation. They would much rather be writing

=ode, which is what they do best and feel the most comfor-

table with (Ref. 54]. If the documentation is an integral

part of the listing then using readable data names, jotting

down a few lines of comment to explain iow a procedure or

function works and structuring the code becomes a much

easier task. The programmer is saved frcm the tedious

paper-work drill of having to lock up a separate program
maintenance document, figure out how it's organizd and

where the needed information is and then submit a change

oatlining what program modifizitions or enhancements were

mile. The programmer can be aore produ:tive by combining

two steas into one by keeping both the documentation and

proqzam code up to date. Having the coda and documentation

tDgethe: can be used by managers as a m)tivation factor by

demonstrating less work for the programms:s in the long run.

Other berefits can be shown is in the case of using a

programming team to develop a large sof:dare project. Here

the teaa can design the docuaentation as they design the

structure of the software. This can elizina.-e the need for a

saperaz_ team just to design and writs the documentation.

The documen-ation design can e direztly related to and

supportive of tne software dasign.

The second reason for placing i mzaentation in the

"istinq is c enhance managements spia of contr)l. As

m_ nticna d earlier, there is a :ane =-qi .:gm nt for it anage_-

k 9e sP a bia- p i -a r - v-ew_ aad be aoi :o su evse, se, ec

-a. t -a:k pZc qramm=r is act *71tes and o:-oress while they

are-_ pe:frminq maintenance tasks. The lcumentati iho

s-in provides the ieans wh-e-eby a naaa ge: can evaluate

-ances "o "he softwae and its resu_7 .t 4uality. ana; e s

would .o CDri . be required to evai uate hanes to "- cod-

a.il asscci't-d dccumentattn and -zha a ve to =-eck -o

53



mike sure the documertation =hange correctly reflects the

code change. In essence it is desired to %void a "double-

entry bookkeeping" system where the do:zaaetation describes

the software as the managers and programmers think it works,

and the listing represents how the software actually works.

(Ref. 53]

The final reason is that a p.3gram maintenance

manual iust remain accurate and valid is long as the soft-

wire system is useful. Prograsiers must be able to guickly

loqicaliy use the documentation to understand what a section

of code is accomplishing and hd it is doing so. Again, if

user's requirements change, it is esstnttia! that the soft-

ware be changed rapidly and in an error-free maaner as

possible. If a maintenance prograimer zaot tell how the

code is working, changes based on valid user needs, or for

any other reason, will be diffizult at best.

C. A PROPOSED "IDEAL" S&INTEN&CE S&NU&L

To overcome the difficulties with updating the documen-

taticn and ensure that the dozumentation is in a focm that

is readily usable by programze.s aad managars forces one to

cnsider a revised format for a program naintenancs sanua!.

Ths manual ccrtents presertsd aers are based on the advan-
tages inherent with the aual"i y and detail that the DcD

=tandazds require and those advantages ;ained from i'icorpo-

ratino :urrent software engiaeer inc pr 1:: -es. The "Izai"

6:oqram maintnenace manual -ill be dviAed ito fu-

-- n (1) Overall Program Structure, (2) Th- rcg:7,m

Liszinq, (3) A Data Dictiinry, aad (U) Suppl-mental

Appendc:es.

6



(The overall program structure should consist of

words aad pictures indicating how the entire system hangs

together. A functional block liagram, which shows all major

modules, procedures and functions is essential. This diagram

represents the system structure, the execution order (if

possible) and data flow. The section should contain a well

organized index, logically arranged, whi-h points the way to
detail level documentation in the listing. The index should

reflect the block diagram and the design 3f the system. The

index should locate major data structures and data clusters

within each module. This section should contain a written

text introduction to the overall purpose and function of the

software, the hardware coafiguration used for tests and
evaluation prior to software delivery, ard the target

computer system (tactical cr data processing) the software

is to run on. Each module of the program will be listed, a
brief description :f the module given ind the functional

r-lat-icnsh ips/interfaces with other aDdules completely

annotated.

Final!y, the sectioa shDuld state the company

:sporsible for the program iesign and development, the

names of the chief programmer and membe=- of his team and

aooicale references and standards used. These tsandards

should Include the program p-rfo:raace spscifications, stan-

4.ards for data objects, ani the language pr:Da_-mminq

standard!s.

2. The Pro:raim Listing

The comvurer program ist-ing : - the single mos-

-a PCrtazt : nod for so ftware aneac activitiEs. The

:bject i: of the maintenance m'ia± is to aaxi-:ze taB main-

.-.a ; -y !s-pect of the iszn . :I t '1s :egad :-i-

61



and realibility are to be emphicized over efficiency. It is

important that the program listing be clair, concise, struc-

tured, well designed, molulirized and str aightforward.

(Ref. 48] Each module should rontain a description of what

the module does and what procedures or functions are

contained in the module. Ei:h module should contain a

section for data descriptions or declarations, global and

local. Table, variable and flag declarations may be segre-

gated and logically grouped.

* a. Physical Layout

Good phy-sical layout is defined as "...that

pcoperty of a program listing which makes it capable of

being read and understood by a programmer not familiar with

the program." (Ref. 48] Good .eadibility may be achieved by

a variecy of techniques, some of which ire; seperation of

1ogically related groups of code, separation comments and

code, blocking (by using liaes of asterisks) lengthy

comments, the appropiate use of blank lines, logical inden-

:ation and the lining up of begin-end, if-then/else pairs.

All the tenants Df structured programmia , as
discussed i Chapter ii, are key ingredients of good

physical laycut. Figures 3. 3 aaad 3.3 illust:ate this
Physical structure. It may be imposed on the code, as with

assembly language, or be oar- of the language syntax, as
with AD4. (Ref. 38, 39, 42]

b. Commenting and Nlaiag

The use cf meaningfui comn-ats is of prima_-7
i: oortaace -o :cre se uad : saadin o f h c Droqran.

Coamen-s should explain, amplify and supplenent the is-t f

rather then echo th= code. -- : .xamole:

= N * 1 -- incrament N1

I6



-- A message has just been iaserted intD the message

ncrement "Isg QUEUE Pointer so that it points to
Sthe location dhere The next massage may be

-- inserted.

Msg_2UEE_Pointer = MsgQueu3_Pointer 1 1

Figure 4.1 in Exampla of Meaningfal Comments.

does nothing to explain why N is being i:remented. A better
example is illustrated by Fi-.gur.a 4.1

If a program molula consists of more than one

procedure or function then th-re should be commentary for

E.ach procedure or function. The comments for each procedure

and funzticn should ccntain in extensive, detailed lescrip-

tion of how the procedure operates and its purpose in the

module. The sequence of prDce sing should be described in

c rocnoloqical order to inclale the -aU[lig sequence of

control. The hierarchical st.ucture of ,he module car be
rflected in a like manner a s comments follow the ohysical

in -entaticn. Table III lists other criter-ia for commen-ing

as discussed earlier.

Al names for data objects, 2odules and proce-
dures must be descriptive in nature. They should attampt to

embody the characterisitcs of tie data itn -hey represen:.

Naies sich as ISuffer, 5E_7 inction ini PA? RollSUM .avc?

inherent meanings and are eas--ir for th- pcogranmer t-o:acs

through the iisting. Names such as A, X, 1, or XYZ are mean-
i1 l ss. Related data items and p:oIIes shoald ha 7

z:_.ated names whi-ch emonst-ite th ei Intercconne i ns.

[Ref. 43, 44, 48]

3



c. Data Declarations and D.finitions

All data items shon!d be grDIDed and organized

according to their logical usage. 3lbal data elements

should be defined in one location. Local data elements are

to described in the procedure where taey are manipulated.

The technique of information hiling, where the structure and

characteristics of local data aid parazaters are unknown to

procedures in other modules [RaE. 21], is to be utilized to

the maximum extent.

If the programming language does not support

strong data typing for data declarations, as in the DaD high

order language ADA, then vaciible, tablB, array iad other

data declarations must contain meaningful comments. These
comments are to describe the parpose, initial value, range

a nd distir.ct structure of a=a data element. Figure 4.2
reveals how a data table (or record) w:ld be declared in

type MONTHNAME is (JAN, F B,AAPR, !AY,JUN,
JUL,kUG,sEP,3Zr,NOV,DEC);

type DATE is
record

DAY: INTEGER caaje 1..31;
S1ONTH- MONTH NA!S
YAR: INTEGER

end record;

Figure 4.2 Example of am ADk Data rable (Record).

ADA. The rable is calle I D A 2 nd s :hree c enis

ramed 'DAY, 'IONTHI, and 'YEAR'. DAY al YEA? ar? lefinei

o be ot: " .yva :NTEGE . MON7: his a s---erate-yte .eci:_---

-i:n calr.d 3Z" E . :- " --- L_ ;E IN E E d ICs, NTH A!'.-c b,.::-e b



t+he support scftware of the system and hiving the mathemat-

ical characteristics of all integer numbes. Variables and

constants associated with the table )ATE can then be

Comment

TABLE ACCOUNTS
- d to store information oa 400 Bank
accounts. Consists of four sltements.

1. ACCOUNT NAME(A:C1!AMEqI -- Contains up to 40 ASCII characters.

2. ACCOUNT NUMBER(AZ:TNRa
-- Ranges f.r. Zero to 9399 and is of

numeric type INrE.TER.

3. BALANCE (BALANCE)
-- Ran es fort -9999.99 t3 9999.99

dcliars and is of numeric type
REAL.

4. FLA3(ACTIV a
-- When RUE (=1), Accout is in use.

When False , Ac:oant is not in
use. Is of logi!1l ty?_ BOOLEAN.

M isc_ llane os
X-- Xprogram initialization tine the
entire table is flushed .(set t ZERO).
indices (or o.itrs) zeiated to this
table are h:e Eama variabls LASTACCT,
N!XTACCT and NEWAZ::T.

TABLE ACCOUNTS V DENS! 400 iFKELD ACCTNAME H 20
FIELD ACCTNR I 14

IELD BALANCE A 22 S 7 3
FIELD ACTIVE B

END-ABLE ACCOUNTS

Figure 4.3 Example of a CIS-2 Data Table.

fined. Ar. exampi- would be a variabl aaa ed 'D' belz gi.-.
- type DATE. Before D is used or init-alized i musz be

u-ther sfineld. This is lDne by by D englg D i dot

S1!ow'ei bv the coipcnenmt aimp as -a: (D.DAf:= ; ) ,

(D.MONTI:= JUL;) , and (D.YEAR:= 1775). r- is c " --a: * -, all

0)



the attributes of the table called DATE are readily apparent

to the naintenance programmer. The readi:i)lity of eLh data

object clarifies the purpose and structare of t. e table.

(Ref. 4] Figure 4. 3 gives aa example of a common way to
declare a table using the Navy's CM3-2 programming language.

The use of clear and concise comments fulfills similar
objectives as data typing in ADA.

3. A Data Dictionary

A data dicticnary provides desriptions of indivi-

dual data entities and can be ised as an index as to where
the data elements are declared in the program listing. This

is extremely useful for large rograms, L.e., greater than

10,000 lines of code. The lata dictionary can and should

provide the formats for the declaration of data within the

program while being a catalog of the lita :esources of a

software sys-em. [Ref. 551
The data dictionary defines the ligical o-ganization

and physical organization of t~e system's lata entiti_s. The

logical organization specifies requirements for data access,

mo dific-"on, associativity and other system orientated

concerns. The physical organizi:ion definss file stcrctures,

record fcrmats, hardware depealent processing featares and

at:abase marnaement charac-teristics. All data s-ructires and

-he operations that are to be perform-d on. each structure

should :P id-Fntified in the lirtionary. ra program listing

car. be referenced for detaili on data zelments and those

f'inctions or ope-ations dependent on thae- elements. A da-a
nnztionary can explicitly reprasent the -elationshis a mong
data an,: the constr -aints thes e elCM-en:s place on da a

structures. Algorithms tha- ay -ake id viaae f s c -

a -a relationships can be more easily l-ii&r.ed ar! no3-ified

"- adit-nav-ike lata specification xi_;ts. [Ref. 56]

65



It is appropiate that the data dictionary reflect

the structure of the program listing as closely as possible.

the conzept of "mapping" the lictionary onto the listing

ensures the consistancy required by maintenance actions. It

is critical to the maintenance programmer to know which data

items effect which particular modules aid vice versa. A

carefully designed and intagrated data dictionary is an

essential tool for any modifications or enhancements to the

soft ware.

4. Ataepndjcas

This section of the maintenance anual is to contain

that supplementary informatioa which is of a historical

n .ture. Examples would be notes on the development of the

* software design, problem repozts and irprovement reports as

19scribed by Glass [Ref. 43]. In a sepa_.te appendix could
be a complete description of the intendad operating environ-

me-, hardware ::onfigura-ior and pe:at ng system support

(desired or required. A continuoas file of each version

r-lease and a log of all chaages zade ro the program (who

made them and for what rz ason should be inluded.

[Ref. 43, 42, 48]

A fina. appendix should contain . Set of Standar-s

fo commentinq, a lgor ithmic s!:uctures, ar.d t. data
*zicn a:y. The standards fo- cDmmeatiag ars ie FaffuI -fo

consist-ancy and to enforcz- :adioili-y f: -he 1 L iS-in .
SSt andazi alaorithmi struc-ure s prov a :-aramwc:k fo: -:he4-Vq1CoU ent obraodus :an b-

oc en of module !ibra: as. Suzh libraries an

-t:er :c add enhancements o: t o-::am in s nc

ecr:d time since -he mcduI=s involvzl a:s already z eSte
4 r srr fzee operation tno = uij -. nsor isvles

-vided by -Ee module are well known. 3nanoaris :o, rc:

a Cictir.arv oro viie Com a t on bSa:Wb n t

a-.wa:=/s:were sys-:m and -ye user 7 z_-on. hi.- is

Copy cvai aLCle tc I7T7C docs 'act



accomplished by specifying the flow and storage locitions of

data entities within the organization or iithin the computer

installation (Ref. 55. Staadards for 3a data dictioaary can

also provide a library of standardized data structure temp-

la-tes to be used for representing the lt,-ical and physical

characteri-stiJcs of data entitiss wi-thi;n the software system

database (Ref. 56].

q6



" ~ ~ ~ 7 _..w . ..

The Department of Defense has an argent requicement to

reduce the costs of software iiintsnanze during the coming

decade. Recent advancements in the aethods of software

engineering such as modularization, structured design,

structured programming and data abstraction have contributed

to greater program comprehension. ihis increased comprehen-

sion leads to easier modification3 to zeet a dynamically

changing environment.

It is the opinIcn of this author that the benefits

obrainel from proven software engiaeering practices can be

realized in the program maintenance maniaL. These principles

can and should be applied to the Jesign and standards for

such a manual. The information available strickly from the

program code itself forces us to guestior± the praztice of

keepinq the documentation seperate from t . code, and leads
to the conclusion that it should not be seperate but

inteqrated into the listirq.

With this in mind the following recoamendations are put

forth:

*The present standards for software documentation be
rev-se to incorpgrate the most issful aspects of
recent software engineerag technology.

* S-udies should be undert i.en with ch-s goal of standard-
zir.g -Eminoiogy for softwae Mai3tinancs ID=umsnts

among all DOD ac'_vities.

* A framework has been oropDsed for i :):--am ma:itenan =
mana a. Ths': mnw - t shoiId b molemenced and
nes-:e on var-ous size r.d tvczs o f softw-:1ie SyS_---m -o
discover whlt savings - M ."-: 2 a oney can 0 =
ach ieved.

Co'py vah"l jo DTIC

e hilt y l gible leeC-g-

63



PROGRAM MAINTENANZE MANUAL (DOD)

from: DOD STANDARD 7935.1S, "Automitad Data Systems

Documentation Standards," 13 Se.tember 1977

PROGRAM MAINrElANCE Mhl~kL
TABLE OF )JNTEITS

SECTION 1. GENERAL DESCRiPrION 1
1.1 Purpcse of the Program Maintenance

1 Man u al 1
1.2 Prolect Refaranc-s 1
1.3 Terms and Abor-viations 1

SECTION 2. SYSTE: DESCRIPT2N
2.1 System Applicat ion 2
2.2 Security ani Prva:y 2
2.3 Seneral DeScriptioa 2
2.4 Prograim Descr-iltio-i

SECTION 3. ENVIRONMENT 5
3.1 Equipment Enviconm-nt 5
S3.2 Support Softwice 5
3 .3 Data Base 5
3.3.1 General Zhicactaristl:s 5
3.3.2 O-gan4zatiDa ani Detail-d

Descriptioa 5

SECTION 4. PROGRAM MAINTENANCE PROCEDIRES 7
4.1 Conventions 7
4.2 Verification ?:cce lur
a. 3 Error Condizi:ns 7
4.4 Si-cial Mait-anc- Ps -7res
4.5 Sbecial Ma.n-aanc3 Pzo3rams 7
4.6 Listings 9

7)



SECTION 1. GENERAL DESCRIPrION

1.1 Pqrpose of the Prog~a laintenarlc Man1l. rhis
paarap~sF-K1de3EF e E Fs-PU-P3o h ~ MM
(Program Maintenance Manual. in the following words or
appropiate modifications thereto:

The objective for iriting this Program
laintenance Manual for (Project Name) (_rojezt
Numbe:) is to provide tia m4intenaaae programmer
personnel with the information necessary to
effectively maintain th-- system.

.1.2 roiect Raferences. This paragraph shall prDvide
a1mffQ- -Z e references appicable to the
history ind development of the proJett. The generalnature or the system (t!ctical Inv.ntory control
war-amina, mana qement information, etc.) developel
shall be specified. A brief lescriptoa- of this sys.em
shall include its purpose and uses. Also indizated
shall be the pro ect sponsor and user as well as the
operating cen.erls) that will run the completed
computer programs. A list of applicable docuer.ts
shall be inc uded. At !east the f3oLowing shall be
specified, when appli-cabl by author or source,
reference number, title and security classification:

a. Users Manual.

b. Computer Operation Manial.
c. Other pertinent 1ocumenta-i:n on the

project.

1.3 r ems and Abbreviati-ns. This 3iagraph shall
rv-i- f is a_- an Zap-Iix~ any tarms(efinitions or acronyms uniue to his documen' and

supject tc interpretation by the user of the doc-aant.
This list will not include item names or data codes.

71



SECTrON 2. SYSTEM DESCRiprDia

12. Sne*~~~aza rhe purpose of the system anid
e t i unZFIons 1-tpiEEorms shal be ex plained. A parti-

Icular application system for example, aight serve fo
c ontrol. mission activities by az-oepting specific
:nputs .(status reports, emergeazy conditbions)

data. tn o;de- to grdc b~t inolaio bu
ITgese f uncti ons shall be related to paragraphs 3 1

S Specif"ic Peirfcr ma nce Requ-ramenets, an 3.2, System

2.2 Seuit nd Pri an This olza qraph shall
adec-iP-T cT~ssr!z- coi pornents 5f hesystem,

Iinclading --n uts1 outputs, data bases,. and corn uter
Voram. I wil asopreszribetany privacy res ri.c-ion associated with the use of the data.I

I2.3 3eneral pesgri~pion. This paragraph will provide
E a coipreiensivel T9- Zz tin of ti.e sy stew l subsystem,
I obs,.etc. in terms of their overall fanc.ons, This
Idescript-Jon will be accompanied by a zhart showing the

ire. iosh of t e za jor components of the
systermlt. nhp

I !j ?roq-am Decr pt ion, The purpose of this para- I
Iqrapff-Ts Eo sdfppT73R1s3 iad criariz:taristics of each
Iproqram and subroutine that. would be of value to a

ma~reac poramerundastadn the progra and
Inance programs related to the specift= system being I
Idocumented. will be d-scussed under, paragraph 4.4
Special klafntenarice Procedures.) Trh s prgah wl
:i i ally contain a list of 1l programs 'to be

acussed, followed by a arrative daszr-ptior. of each
proqram ana, its respetv sbotesudr ssoarate

aragrap~s startzng w4 'h 2.4.1 'tirough 2.4.n.I cfcmation to be i4ncluded in the narr'ative descrip-
ti on is represented by the following items:

a a. IdentiFiLcation - program aumbar or tag
nc-,ud qaiSignation of the version

nube of the program.
b . Fun-ctions - aescript--on of pro:am furcti13s I

ad method used .46n tas program to accomplish

z. Input -descript ion fteipi. eciin
he~e must include all inpai~ ertz-enr to
maintrnance ogorammz-g -nclui-' g:()Data records useI Sy the prog:7a dur:,.ing0 oe ra t 40n

(2) ip data -ty s and iccazrion.(s) used by
4 I he program weNa its opezrati*on begins.

(3;ntry requ,-reme3nts concerning he
initiation of the pr-og-am

I 2I

72



1. Processing.- description of the processin,
performed by the program, inclu!lng:

(1) Major operations- the major operatiocs ofprograms will be lescribed, the descripti-on
may ref ernce chirt(si whici may be
included in an appendix. This chart will
show the general logizal flow of

Ioperations, such is read am input,
access a data record major decision, and
pr-nt an output wicA would be represented
by segments or subprograms within the
program. Referenze may be mle to included
charts that present each major operation
in more detail.

(2) Major branching zonditions provided in
the pro am.

(3) 1estric ions that have been designed tnto
the system with respect to the operationof this pro ram, or any limitations on
the use of he prgram.

(4) Exit requiremea s concernia termination
of the operation of the program.

(5) Communications or linkage to the next
logical program (operational, control).(6) OuteUt data type and locati3n(s)produ-ed by tE-- pogram for uSe by
related processlin segments of the

(7) Storage - Specify the amount and type of
storage required to use the program and
the broad parameters of the storagelocations needed.

e. Output - description of the outputs producea

by .he program. Whil this desc:iption may

any intermediate output, work;in files, etc.
should be desc:ibe1 o the benefit of the"
maitenance programmer. t

f. In-erfaces - description of the interfaces to
from this program.I. Tables and Items - Provide details and
characteristics of tla tables ai items withineach taoe -am Itm ,_ter

pg Items not prt of a table must
be s.-9 seueramely. it-.s contraned within

6 a:ab;e may be zefera ced :rom the tabledesc:.:;tons. If tis aata deszriiton of the
Program provides sufficient inff;mation, th
program istizg may b? -eferencs tc orovi !
some of the .cess.r7 iafo-natioa. A-least

3

73



1" the following will be included for each table:

(I Table tag, lable or symbolic name.
2 Full name and purpose of the table.
(3 Other yrograas that use this table.
(4 Logical dvisias within the table

(internal table blozks or'parts - notSentri4es);,
(5) Basic table structure (fired or variable

length, fixed :r variable entry
structure).

(6) Table layout ( a raphiz 3esentatioashoul d be usew . Included* Aa supporting
description shoad be table. conttolliag
information, details of the structure of
each ot entry, unicS Or signifi ant
chara eristics o- the u of the table,
and information aboat the names and
locations of items within the table.

(7) Items - the te.- "item, refers to acific category of detailed information
thtis coded .E~r direct ari immediat e

manipulation by a program. Used in this
sense, the definitlon of -i item is

A machine- and Pro rax-oririted rather
than operatiohilly oriented. Of primary:mportance is in explanation of the use
of each item. it least the following
will be include for eazh item:

jai Item tag or label a.1 full name.
b Purpose )E the ite..

c )Item coding, depealn' upon th
item type, such as integer,
symbolic, status, ec.

'a. Ur.iue Run Features - deszription cf any
unque features of ta-1 runn-ng Df this
program that are not incelude ii the
omu-ter Operation iaaual.

7 3



1SECTION 3. ENVIRONIIENT
3.1 E ~pjet F.Lijonmeatj rhis oaragraph shall
'i cff eq ulpMITid its general
characteristics as they apply to the system.
34 iSuPo~t ,Soitware. This pan g napi shall 1-,s", the
Vai_-s sp6'f 51.3!Tware used by the 3ystem and ilen-

Itifi the version or release nuaber inler which the
system was developed.

.i.3 Data Bsre Informatioa in this iaragraph shallIin;clda1 a- complete des--niption of tZnatura- and

GirlChara2c--eristics. Provile a geaeral

hs ifCQd~lon o! Mf~ cFFa,42F-3Ttics of the databae

a. idettification -name and mnamoaic referenze
of the co eg data base). List the

rorams u? li~ziTng tueg- component and explain
heus of the component in ths system.

b. Permanency - niote whether the zomponent
contains static data that a program can.

I reference, but may not change, Dc dynamic
I data that can, be changed or updated duringI

!;semoeration. Indicate whather the change
is perio icor random as a function of input
data.
daar ~ae specify the storage miedia for thee

da-'agase(e. apf'O'd.-kinternal smorage
and the amoun or storage regni,-,ed.

1. Restri'ctions - sxpla- a why 'limit ations on
thG use, or this coaPD20en1t by thze program Jn

I the system.
I ~ _q~i'-on and Detailed Des=Citon ri

~~ Or will s~~Ve1 HEh~n ErNa struzcure aiaI
of the, data bass. A layout will be shown and its

Icom?3st: on, such as racords and tibles, will be
9*pl~irrd. if available, D mD ut er ge.arated or: ot-her
l isrzings af this detailed informat-oa may be rfsta-

Ienced or included herein. Tae followi:ng -:ems indIcate
-he type of informatiJon desired:

e I a. Layout - show the ztzicture of the data base
I includ~ng r cozd and _tems.

a . Sections.- note whalther -:az paiy3tza. r-cTrd
I :sa Zc:a ecord :5r zre of szeveral that

ccnst_--uts a Locical record. rirntify theI
Irecord parts, such as hesalar o: :on-trol

segments and thtl body of the razora.

5

r COPY availabl, to DTtC does not
73 Permitful gb.£xodin

MI -gil e tou in



I

I -. Fi alds - identify aazh field in the record
structure and, if necessiry ,explaLi its purpose.
rnclude for each field tie Yollowi a items:

(1) Tags/labels - indizte the ta; or label
assigned to refereace each field.

(2) Size - indicate the length anl number of
bits/characters that ma e up -ach dataf ield.

(3) Range - indicate thie range of acceptable
values for the fiell entry.

1. Expansion - note provisions if Iny, foradding additional data fielas to the recorl.

!6

75



I SECTON 4. PROGRAMl MAINENA11-E PROCEDURES
C I Section 4~ of the manual shall provide information on

the specifmc procedures aecessry for the programmer
t.j maintain the programs that make up the system.I I.i CflV.,,tons. This paragraph willepli al
!uIesZc~eSH and conveations that have been uised
w~thin the system. Information Of t24-S nature could

I include th~e following Items.

a. Design of mnemonic ilentifiers ind their
appl-caticn to the tigging or labeling *of
prcgrams, subroutines, rezords, lat1-a fielld
storagq areas, etc.

b. Procedures and standards for =hirts, lisringst
serialization of cards, abbreviitions used in
statements and remarks, and symbols appearing
in charts and listings.

I of conventions.I
d. St andard data elements and related features.

j a Veiiatln *Procedures. This paragraph will
I requireme~is Id procedures necessary t
cect the. performance of a program sec -tion follo)Wingit~s modfication. Included na also be orocedures for

Ithe periodi--c ver.1:6cation oE t e prog;ram:

V 4.~3 Error Coditions. A description of' error cond.L-
ors -71r us doc!Imented, may also be

I :ncluled. cThis dezscrip.)4.-on snall include an expl-na:
on. of the sourge of --he err-or aid recommanded
mihd to cozrect .I

44S teci.al* Maneac ?r:ocedues This paragraph
~ on~n ny.pe~a f-oalres cequired owhich

Ihave not been, delineated 31 sewhere 'a this sect on.
S SpeciA.fic :in'crmatioa that may be appropiate for

Ipresartat,-on shall include:

a. Reguirements, porcedures, andver.cto
whfch may be nscessaC4 to ma~ntaln the sys-: em.nnput-ou-put components, such a3 the data

b. Requirements, procedares~ and eifctome-lidsnscsssary to percr a LibryI Maintenance System zaa.
4.5 S oec z.al *Yaaitenance Pcrarams. rhis pa:1-capb

I ~hNi1-75n-:n-an lavenzory or ny saszlal programns
*I(Sluch as e rstoration, purging historical fiie,-,zsl

Iused to maintain thesystem. Thase pr:j:ams should bg I

paragr;aphs 2.3 and2.4 of the MM.I

77



. -gg~t-O Ut Reliqr.a lents.

Incl f-f -- p ag~ hall 13e the re uire-
ments concerning the equipment and materials nee ad to
support the necessary maintananze tasks. Mareials
may, for example, include card decks for loading a
maintenance program and the inputs whizh represent the

I changes to be made. When a support syse is bing
used, this paragraph should reaeranzq the appropiate
manual.

b. Procedu.Ees
The p-5e--fe presentel in a stap-by-ste? manner

shall detail the meahod of preparing te _npu s, suc i
as structuring and sequeaciag of inputs. The opera-
tionrs or steps to be followed in settiag u, rug:inq.f
and termirnating th% maintenaace task a t e equipment!
shall be given.

4.6 Listings. This paragraph will :ontain or privida-to the location of the program list"ng.
Comments apropiate to partLculir instructions shalbe Dade if necessary to understand and follow the I
listing.

I

I I

I i
I I
I 1
I I

I I
3 I

_ _ _ _ - -- - - - -
_______________________________________________________________________ _____________________

73I



LIST OF REFERENICES

1. United States Goverazeat Azcout~ntig Office Report
AM-1-5, g__1 Aggazes' aaitlaence of Compute

_FHD-1-25, _&vl &a- -0 p. 'r, February

2. Brooks, F.P. Jr., Iii9 Myhia M
Addisor-Wessely, 1975. t-ca Mq=2l,

3. B:)eh m, B., "Software ai Its Impazt: A Quantitative
Assessment," DAtanaatio, v. 19, no. 5, pp. 48-59, May

14. Defense Science Board, j~port of the Task Force on

5. Kli-ne, . B., and Scaaideitind, NI.F. "Life Cycle
Comparisions of ;iarduarez an ~ Softwa~s
Manerng lit I T hi cd Naoa elia biliLty

6. Lehman, J. H. "How Software Pcojects are Really
Managed," Datamillon, v. 25, ?p. 113-i29, 1979.

7. Lei t .P., Swanson B., aad Tompkins, G.E.
*'haracterist.cs of Appia to Soflwa~e Maintenan-e t
Comm ications of the _CYI, v: 21, a). 6, pp. 466-47ir

8. Maunson, John B.~ Iso ftwlre intainability: A
Pc act- cal Co nc ern cr L-4LEa cyc.e c~sS, Com1PSAz, pp-
54-59, 1978.

9. Chieatam, Thomas E. re sso Sfar,
Natioa-. Technical Info-rUii'o6 servI ='7 1 73.-----

10. L onls, ~Ichael J., "IS3L1vaging Y:)ur Software Assat
(r001s Based Maiantenancel," AFIPS, pp. 237-341, 1991.-

11. mlills, H.D., "On t I Stti*st -ca! Valida:--on --
CoQU~r Pr- [ ars, 2: ocreedi s if the Seconl*- -aeat icnal C c rect? C I S~i T,:nI

Mr-3Z--5, --. 7=7, 11q75 .----

12. Rauttez, John, IM- I, 'Ia. t 9 aa is Maq~e'
Pcbie an(! a --rcgzam~a:Is OPPOc 1-1-7,11 AF?:S, p
243-347, 1981.



13. DeRcze, B., and Nyman, T F "The Software Life Cycle-
A Management and Tech;iDlogical b:allange in the
Departmenit of Defense," ME 'asi ons on 3~ 1tware
P~lepa SE-4i, no. 4, pp =i3T97,;VryT9

14. flu Stephen S., and :3llofell3, James S., "Some
Stability Measures for Soft.ware* laintenance," IEEE

aofts-e 0 v. 6, no. 6,

15. Naval Postgraduate School* rechnical Report
NPS-54-82-002 aoftwjC9 lainte3ance Imarovement

Thrug Bev.te and
IME ent at b n y 7HZI WIn4 --N 4avr

P53f!i-a1Pch oo1, Mon'terey, CA-. pp. 23-26, February
1982.

16. Pilcher, Russell D. Techni U-3 Available For
Im g the Maitaiofo -1F!D eapoa e

Iff~ffIgy, Califcrnia, lune- 1930, p. 9-0.

17. DeRoze, B. C. , Spcial Presantati jn, Proceedi ngs on
Mnaingq -he DeveIo at eaon S 1  i fae

er-nc pp -IT2 MET- 75-.-

13. Myers, G. J. Softwara Reli'ability Princ!Dles anl

19. Laintz, B.P., and Swansoa, :-!B. Soft,'ware Maiatenancq
-- qmj.t Addic-ely aada .

20. Silbey, Va~dur, "Documetation 3taaidardizatioa," Data
lnge mtt, v. V~. no. 4, pp. 32335, Aril 1979.

21. Na t -'or a 1 3ure au of Staadazds R = o r t N'BS-SP-530-11
C:mpU-;r Softw~are Manaa~tiert - A ?,-e= Fc: Pro-iec7

T-UU77 zV77.

22 3Bo"hm, D. W. , "1Software ~aI - I eer -;,- gEE
Trn sajction -s on Com 2rs, v. C-25, 13. 12, Dac-iB47

23. niR-che, Robt?=t S., an-d WilLians, Zha:les E., A Softwares

1onzerey,
Ca:iforrlia, pp. 72-73, Dezembe: 1981.

24. Parnasc !navid, L., I"es-'n 3Df:4a:a for- Ease of
7x-ens--cn an a Cortraz- on -a- E asac t :ns o r



25. Fretaan P.,and Wass rm~li *AI. T1torlil on sftware

25. Tauseworthe, L.C., 3tandardj~aa Deveopmn of
C~mput er S ftwae ( j
ragTEE of Technology, Part 1: 1975, Part 11: 1978.

27. Swarscn, E.Bg "The Dicuensi:ons of laint 3ance,"
_qjIndInternational cocifB~znce on 3oftware

29. Rome Air Development Z~nter Repo):t RADC-TR-79-200,
R LIabIU A--1 acd itano M~ ni ement Mar~uaj. by

29. Cave,' W.C. and Sal!isbuc~y, A.B., "oControlling the
Software Lila *Cycle - rhe "Project Management Task,"
MEE Transactions on Sftwa~e Z nierna p.

30. C:ooper, J.D., "Corporat.e Level 3oftlware Management,"
IE-Z ansac+-,ons on 3Sof tware ? n gineer-na, pp.
-31 §3237 -U17799

31. Daly, E.. "Mnagement :)f Soft'wac= Develo ment " TEE
Transac~ions "on Sof4-ware '3a-seil op. 329-242-l

32. Mr.-RE C?rporation, DOD Wsap2g63 S stsms S~ftwl-re1pu qsition, andc16I2 11 C- 7.r S T R v T ii

33. Applied. PhySics Laboriatory n a JohnrH. Dk'ois
tuaiv-ersfty, ort SR-75-3, D;D '4z=a)n Systsrn 3t:)f41

~ar~a~m~ay, by Koss~~JT7
T~cXccss~r 1 No: AD-1)22160).

1t4. Ass" S-ant S ec r Zt ary oV OE efsns, De fe-nss SYS . a,

4 ~A:!aqs:-cr 'an~gemernt ~Iaidsbook, Tftw: -~anc

~i~e 1'77,(DTIC Azc~3s.ca No: S.D-iko53010.

115,:) wa r C nz-g t:.)ion 1 n a - 31 a toi
C~:) M0 6 Jauacy 1379.



37. Naval Postgraduate 3 cho) 1 rachnical Report
NPS-5L4-82-003g Evalua+.t;:n of STZNAVINST 3560.1:

SIT4MMKN 1ihoo7 Monterey, CA; ;p. 22-24,i1982.

38. Ross D.T., Goodeneoagh, 9;B., iad Irvine, C.A.
115of4were Engineering: Princ. pieB, Processe-s and
Goals," Coptr p. 5, lay 1975

39. Biker, A., "Structural Programaiig in a P:Dduct;ion
Programming Environment,"1 Progeedin ~s of the IEEE
Tl1ternatilonal Conferen=9 :n I: ff - F .7;

40. Linger, R.C., and M.'llS, i.D., 113n the Develooment of
Lar:ge Reliable Prograzks, Zacrnt T:q-snS n
Pco~mm-na mthodQl M, Pcenti-=9!1, -- Iewo~l

41. Linger, R.C:' Mill1s, H.D. and wittr B.J. S'ructured
?Pcciraumminc: Theory aa Prctc'icq

3I!-7j C., adiff7MaHOsaa§3tts, DO. 15-:16;

~42. Wu I, W. A., t Languiagas and Strictured Pr,,rais,"(C'Irrert 1! en ds 1In PrOgraila methD~Thogv,
Pe-R~~g~w~d :~sFT ~er e7T777 -

u13. Gl~ass R.L., and Rioiseux R.A., 5)fltvars iaateiancs
G.Iide3ook, ?renti'c;-qIiL Enq135;I";, L Z M;

44. Baznesr J.3.?. ?r ogqruin an m _)A Add'son-Wesl-v
?ibisnr~ Co. Rea Tnss~ s, 1981.

'45. ja ck sonr., M.L. Pr -'nc211-9 of Drog:=- Desian, kzademic

46. t"Depar..flsn of D e f-mn a ppquizsmen -ss
?r-ogrammin; !avironmeat .4rtE ::mnron Hia O~datr
Langquage - ?-_B B L M A N::? v e d D )fes S" xlvanc.z
?- seal-ch Prcj=-cls At et~y, rnq, i:ia Jnay
19 379.- ,, zj - , 3-

47. 2 -c h I J., and Tl.oUIDs:a B. U"~NIX Time-5-iar-Inc
I~stw Th 3 -iu.1 S vs: T~ciia eJour'l,2

caaz zcavZ an.nd zc3:ve ns

62



49. Liskov B. H~r" Desin lth:):1 o Reliable

53. Bathke, F.3., et. al., 11"Improviag the Usability of
Programming Publications," IBII Systams Journal, v. 20,
No. 3, pp. 306-320, Janulcy-T78T.-----

5 1. Sayders, J., "User 6aauals that laIke Sense," Comptar
Decisions No. 13, pp. 125-128, Apctl 1981.

52. Jadisct-t, 09J .M. RU PB A., 1: ii Dassinger, R..
I#Eflects of Man'ual StYle on - erforaince in iuatn
arid Mac-l.ne Ma~itananza," TMS~ ~~Jor~,v 0
Nio. 2, pp. 172-183, Febrry 17T.- .. t itu or ,v 0

53. Wlson~ L. "The Do's ind Don'ts of Documentation,"
D;atama--:on, v. 27, pp. 185-185, S--ptamber 1981.

5t4. Weinberg, 1. zt- Psychol1, of Z,3mOutI.er
P-:: 3.gammn~q, Van NTostranI ReiTIF515 ., p-.50,-7977.

55. F? deral In f orm ation Prozassing S,:aa-ads Publication
75 (PIPS PUB-761, Sp~cifications aad aui.deli-nes for
Planninjq gn Using 9 S§ 7 -~ -*:C ~ eoarE~E~c~ ~~me:e, it-Iureau Of:
Standards, -p. 6, 20 August 1933.

56. Pre2ssmar, Rogqer S., S c,,w a:~ Engneeria g
?:ato,:rS Ap~cacti, c oo ny Ne

83



4

( INITIAL DISTRIBUTI3N LISt

No. Copies

1. Defense Technical Information Cntar 2
Cameron Statiqn
Alexandria, Virginia 22314

2. Library, Code 0142 2

Naval Postraduate School
Monterey, California 93940

3. Department Chairman, Code 54
Department of Administrativa Scienceq Naval Pcstqraduate School
Monterey, California 93940

4. Department Chairman, Code 52
Department of Computer Scince
Naval Postqraduate School
Monterey, California 93940

5. Curricular Officer, Code 37 1
Computer Systems Technoloqy
Nava Postgraduare School
Monterey, California 93940

6. Professor Norman Lyons, ZCo. 54Lb
Depa-tment of Administrative Sciencas
Naval Postaraduate School
Monterey, California 93940

7. Professor Roger Weissinger-3ay!on, Zola 54Wr
Depa:tment or Adminis rat4-va Sc'encas
Naval PosT graduate School
Monr-arey, Caiifornia 93940

8. LCDR Ronald Modes, Code 521f
Depirtment of Computer Scie'ce
Naval Postqraduate School
Monterey, Califcrni-a 93940

9. Ma :) W.D. Helling, USMC
25 1 Windsor Avenue

'* Dubuque, iowa 52001

10. LT James roward Teuscher, 3S N 2
Post Office Box LI6
Wells, N1ew York 1 2190

34



I


